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Abstract
The aim of this thesis is to develop a MATLAB computer model for optimum design of
steel structures via harmony search (HS) algorithm. The objective of the optimization
routine is to provide a minimum weight structure while satisfying prescribed constraints
such as strength and displacement limitations. The HS algorithm is a relatively new
optimization method that has shown promise when adapted to structural optimization
problems. Unlike other optimization routines, limited research has been presented
incorporating this mathematical model. The author of this thesis decided to test the
applications of the HS algorithm in structural engineering problems.
The HS algorithm is a meta-heuristic search method recently developed and adapted to
optimization problems. It uses a stochastic derivative, which utilizes the experiences of
musicians in Jazz improvisation to find optimal solutions. It differs from classical
calculus bases optimization techniques that require gradient information by giving each
decision variable a probability of selection.
Three examples have been provided showing the capabilities of the HS for least weight
optimization of truss and frame structures. Both continuous and discrete optimization
routines are present in this thesis. In the discrete optimization routine, standard steel
shapes were used in accordance to the American Institute of Steel Construction (AISC)
shape database. Strength and displacement constraints from the 2005 AISC load and

resistance factor design specification were used to design.

12
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In addition to least weight optimization, damage tolerance optimization of structural
systems was also considered. Least weight optimization was performed accounting for
probable future damage to the structure. A general mathematical model for damage
tolerant optimization is presented. This method is based on serviceability, ultimate and
residual capacity requirements.

It is shown that the HS algorithm can be a powerful tool for optimization problems,
particularly structural engineering optimization problems. It has the ability to handle
complex problems that would be very challenging to solve by traditional methods. It
also, has been shown to be competitive with several other well know meta-heuristic

optimization methods.
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Chapter 1: Introduction

1.1  General

One of the most catastrophic structural failures in modern history has been the
collapse of the World Trade Center towers in 2001. Most individuals do not think twice
about the structural systems they encounter on a daily basis. They typically view
structural assemblages such as the twin towers as invulnerable structures incapable of
collapse. However, the collapse of the twin towers, among other failures, shed light to
the public that structures are vulnerable.

The collapse of the twin towers was found to be from a pancaking action that
resulted in the towers crushing themselves completely after the planes struck. The term
progressive collapse was a widely used term in the structural engineering community
after the events. While progressive collapse is not a new phenomenon, it has been a
source of increased interest due to these large-scale failures. Because of these failures,
increased attention has been focused upon the concepts of structural robustness,
reliability, damage and redundancy. The importance of design procedures that provide
redundant and robust structures is widely recognized to reduce further failures.

In its most simplistic form, a structure is "any assemblage of materials which is
intended to sustain loads” [1]. Typically, if an engineering structure fails it will result in
loss of life or at the very least significant injury. For this reason, a great deal of effort
and work goes into the design of a structure so it can properly sustain prescribed

loadings. However, failures still occur. Structural failure can be induced by a wide

14
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variety of events such as, deterioration of the structure over time (corrosion), sudden
impact damage (blast), natural events (earthquake, tornado, and typhoon) and improper
initial design. [1]

The concept of robustness, redundancy and static indeterminacy are key in many
design philosophies and widely recognized as an important aspect in structural
engineering. However, finding a consistent definition of the redundancy and robustness
can be challenging. For example, the definition of redundancy may be provided in terms
of collapse load, number of plastic hinges, the probability of system failure, etc. Others
tend to use the term redundancy and static indeterminacy interchangeably. It has been
that the degree of static indeterminacy does not correlate to structural redundancy.
Structures with lower degree of static indeterminacy can often times have greater
redundancy than their higher degree counter parts. This is due to the fact the
redundancy relies on a wide variety of factors like, member size, material properties,
structural topology, loading sequence and applied loading. Generally, redundancy is the
ability of a structural system to redistribute loads among members that cannot be
sustained by another member due to damage. Whereas, robustness is the ability of a
structural system to sustain a specific amount of damage not disproportionate to the
cause of the damage itself. [2]

In this thesis, the effects of prescribed damage scenarios on several structural
systems are investigated. The structural systems investigated are then damaged from

progressive deterioration of member material properties. The amount of damage is

15
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prescribed by a damage index associated with specific patterns of cross-sectional
deterioration. Once the damage is defined, structural performance will be evaluated and

compared to the original intact structure.

1.2 Problem statement

The methods of finding optimum design solutions for structural systems can be
very cumbersome to solve by hand, due to the large number of design variables present
in the problem. The designer must decide which parameters are important for their
current problem. Typically, in structural optimization problems, minimum weight is the
desired search criterion. Optimal design of structural systems are normally limited by
several constraints such as choice of material, feasible strength, displacements,
deflection, size constraints, load cases, support conditions, and beam-column behavior.
This research utilizes Harmony Search optimization algorithm for optimizing structural

systems member sizes with both discrete and continuous design variables.

1.3 Objectives

The depth of this thesis is to develop a computer model that utilizes the harmony
search algorithm for optimization of steel structures. Strength constraints from the
AISC Load and Resistant Factor Design specification will be used along with,
displacement, deflection and member size constraints. This model will then be adapted
for damage tolerant optimization. Lastly, a brief section will discuss the correlation

between damage and reliability.
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1.4 Methodology
In order to achieve the objectives presented in section 1.3, the following approach was

taken:

=

Perform a literature review of previous research related to optimization and
damage tolerance

2. Develop a suitable harmony search algorithm code

3. Test the developed code to benchmark examples

4. Implement damage tolerance constraints into the harmony search routine
5. Compare optimization results

6. Draw conclusions from the results

1.5  Organization of thesis

Chapter 2 presents the literature review of the AISC code, beam-column connections,
behavior of semi-rigid connections, optimization and uncertainty in engineering.
Chapter 3 presents an explanation of optimization and various techniques followed by a
detailed overview of harmony search optimization. Chapter 4 covers the topic of risk
and reliability in engineering. Chapter 5 presents the modeling of structural systems.
Chapter 6 presents design examples of the topics covered in previous chapters. Chapter

7 presents a conclusion and recommendations for future work.
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Chapter 2: Literature Review

2.1 Introduction

This chapter discusses background information that is relevant to the current study. As
discussed in Chapter 1, the goal of this research is to provide a computer model capable
of optimizing steel structures. The information presented in this chapter provides a
foundation for achieving this goal. The following sections discuss the AISC code
specifications, connections, optimization, harmony search algorithm, reliability and

structural damage.

2.2 AISC-LRFD specification of connections

Connections are the components that hold a steel structure together. Typically,
structural connections are bolted or welded together in different configurations
depending on the system. According to AISC, there are several types of steel
connections: simple framing (unrestrained), rigid-frame (fully restrained), semi-rigid

framing (partially restrained) and truss connections. [3]

2.2.1 Truss connections
In truss connections, only axial forces are transferred through the connection. They

allow a full range of rotation and are considered one of the most simplistic connections.
[3]

2.2.2 Simple connections
A simple connection, also known as a shear connection, can transmit shear and a

negligible moment force through the connection. The connection allows unrestrained
18
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relative rotation between the framing elements and shall have sufficient rotation
capacity to accommodate the required rotation determined by analysis. Inelastic

rotation of the connection is acceptable. [3]

2.2.3 Moment connections
Moment connections, unlike simple connections are capable of transmitting moment
forces across the connection. The LRFD specification for structural steel buildings
classifies two types of moment connections: fully restrained (FR) and partially
restrained (PR). When connection restraint is considered strength, stiffness and ductility
characteristics must be included in the analysis and design of the structural system. [3]
1. Fully-Restrained (FR) Moment Connections transfer the moment force while
allowing a negligible amount of rotation between members. In analysis, this may
be assumed as zero rotation between members or fully rigid connections. The
connection shall have sufficient strength and stiffness to maintain the original
angle between members at the strength limit states. They are particularly useful
when a framing system needs to provide more flexural resistance and reduce
lateral deflections. [3]
2. Partially-Restrained (PR) Moment Connections transfer the moment force while
allowing rotation between members. They have insufficient rigidity to maintain
the original angle between the column and beam. In analysis, force-deformation

response characteristics of the connection shall be included. [3]
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N =

Figure 1 - Connection Rotation [6]

2.3  Types of connections

2.3.1 Single web angle
The single web angle connection is shown in figure 2 and consists of an angle
connecting the web of the beam to the column flange. Number of bolts, angle thickness,

web thickness and column thickness, influence the connections behavior. [4]

Colnann Heans

—
Aangle

il

Figure 2 - Single web angle [6]
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2.3.2 Double web angle
The double web angle connection shown in figure 3 and consists of two angles
connecting the web of the beam to the column flange. Number of bolts, angle thickness,

web thickness and column thickness, influence the connections behavior. [4]

Coliar esy

.fT

Figure 3 - Double web angle [6]
2.3.3 Header plate

The header plate connection is shown in figure 4 and consists of an end plate that's
length is less than the depth of the beam, welded to the beam and bolted to the column.
The behavior of this connection is influenced by plate thickness, plate depth and beam-

web thickness. This connection performs similar to the double web angle connection.

[4]

Coliwizin H=amm

-

Figure 4 - Header plate [6]
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2.3.4 Top and seat angles

The top and seat angle shown in figure 5 consists of two angles that are connected to the
top and bottom flanges of the beam then connected to the flange of the column. The top
angle is used for lateral stability and is not considered to carry gravity loading. The
bottom or seat angle only transfers vertical loading and provides an insignificant
amount of moment restraint. The number of bolts and angle thickness influence

behavior. [4]

Q =

Colveiziig Beajp

L
="

Figure 5 - Top and set angle [6]

2.3.5 Top and seat angles with double web angles

The top and seat angle with double web angles is a combination of the top and seat
angle connection and double web angle connection as seen in figure 6. Depth and
thickness of the angles, column flange or web thickness and gauge distance of bolts in
the vertical angles govern this connections behavior. Plate thickness, column flange
thickness and moment arm for column flange bolts influence the behavior of this

connection. [4]
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Figure 6 - Top and seat with double web angle [6]

2.3.6 Extended end plate without column stiffeners

The extended end plate connection shown in figure 7 is comprised of a plate welded to
the end of the beam then fastened to the column. The plate extends past both the
tension and compression flanges of the beam. Plate thickness, column flange thickness

and moment arm for column flange bolts influence connection behavior. [4]

Colummn i Eonmm ; Exsrnil
g : nd] plat
LE T LR

Figure 7 - Extended end plate [6]
2.3.7 Extended end plate with column stiffeners

The extended end plate with column stiffeners seen in figure 8 is the same

configuration as the previous connection only with the addition of column stiffeners. [4]
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Figure 8 - Extended end plate with stiffeners [6]
2.3.8 T-Stub

The T-stub connection shown in figure 9 is similar to the top and seat
connection except tee sections replaces the angles. This configuration provides a very

rigid joint. T-stub thickness and width influence the behavior of this connection. [4]

¥
] Teo stub
{ H '

Coluinn Beann

= 4
+

Figure 9 - T-stub [6]
2.4  Behavior and modeling of semi-rigid connections

A beam-column connection is subjected to axial and shear forces along with
bending and torsion moments. When working with planar frames, the torsion moments
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are often neglected. Axial and shear deformations are typically neglected because they
are small relative to bending deformation of most connections. This leaves only the
rotational deformation of the connection to be considered in semi-rigid connection
framing. A semi-rigid connection is able to rotate through an angle 6, due to an applied
moment M previously shown in figure 1. The angle 6, is the relative rotation of the
beam and the column taken at the connection.[4]

Several connections were experimentally tested by Frye and Morris to show the
rotation-moment relationship. The connections moment-rotation behavior is non-linear
in nature and falls between fully fixed and ideally pinned. The relationship of several

types of connections is shown in figure 10. [5]

T-5tub

End plate with colurmnin stiffeners

Memen

End Plate without colurnn stifenars

Top and seat angles with
double web angles

Top and seat angles

Heazder plate

Double web angle
single webh angle

T
Helative Raotation

Figure 10 - Moment rotation curves [5]
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2.5  Mathematical modeling of semi-rigid connections

The most precise and dependable knowledge of beam-column connection
behavior is found through experimental testing, but these test can be very complex and
expensive and are not practical for design practice. To take in account connection
behavior in structural analysis, connections are typically represented by mathematical
models representing rotation-moment relationships. The non-linear behavior of a
connection is difficult to represent exactly by mathematical representation and the

models used are approximates due to simplifications.

2.5.1 Linear model
The most simplistic connection model is single-stiffness linear model proposed
by Batho, Rathbun and Baker with the following expression: [6]
M =R * @, 1
where M represents the connection moment and R and 0 represent the stiffness and

rotation respectively.

2.5.2 Polynomial model

The linear model is an over simplification of connection behavior and does not
represent the true behavior of a connection. Polynomial models were proposed to
provide a more accurate representation of connection behavior. Frye and Morris used an

odd power polynomial model to represent the moment-rotation curve as follows: [6]

@ = C,(KM) + C,(KM)3 + C3(KM)® 2
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where 0 is the connection rotation and M is the moment acting on the connection. The
variable K is the standardization factor determined by the connection type and geometry
and C1, C2 and C3 are curve-fitting constants obtained by using the least squares

method. These constants for various connection types can be seen in table 1. [5]
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Table 1 - Moment rotation curve fitting equations [6]
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2.5.4 Three-parameter power model
Chen and Kishi adopted the power model to represent the rotation-moment

relationship for beam-column connections as shown:
_ Ryi*@ 3
M= Sio/o,mm

o aM Rici 4
ki — dao - {1+[¢/®0]n}(n+1)/n

_ M 5
T Rpi(1+[M/M,J1y1/n

where Ry representes the initial stiffness, M, is the ultimate moment capacity and n is

shape parameter.[6]

2.6 Optimization of steel structure

As today's world continues to increase in population with world resources
declining the need for economical designs is at the forefront for structural engineers.
More structures are needed for living and production than ever before which is why
these structures need to be designed using the minimum amount of material available.
Due to this need, optimization algorithms prove to be a useful tool when designing steel
structures. These algorithms can be implemented while staying within design
constraints specified from steel design code and search for a minimum weight or cost

structure. Formulation of these optimization algorithms is through mathematical models
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with discrete design variables. The reason for discrete design variables is so the design
model can adopt standard steel sections commonly used in practice.

Due to the complexity of structural optimization problems, heuristic search optimization
methods have been the preferred choice for designers. Genetic algorithms, simulated
annealing and ant colony optimization are some of the more popular heuristic search
methods used in present optimization problems. These methods are easily adaptable to
structural engineering optimization problems.

Several papers have focused on the optimization of steel structures.

Pezeshk et al.., (2000) [7], researched the design of nonlinear framed structures
using genetic optimization. The paper presented a genetic algorithm approach for
optimum design of 2D frames using discrete structural elements. The designs were in
compliance with the AISC-LRFD (1994) code. Both linear and geometrically nonlinear
analysis were performed to learn how P-A effects influenced optimal designs. It was
concluded that the P-A effects did not significantly influence the optimal designs, but in
some cases, it could yield a better design. In addition, it was found that the proposed
optimization approach was effective optimization technique.

Hayalioglu et al.., (2001) [8], researched optimum load and resistance factor
design of steel space frames using genetic algorithm. The paper presented a genetic
algorithm to design moment-resisting space frames subjected to AISC-LRFD
specifications for minimum weight. They utilized standard steel sections from AISC

wide-flange (W) shapes. The proposed frame was subjected to wind loading in
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accordance to the Uniform Building Code (UBC). Comparisons between AISC-ASD
and AISC-LRFD designs were made and showed that the former code resulted in lighter
structures for the presented examples.

Hayalioglu and Degertekin (2005) [9], researched minimum cost design of steel
frames with semi-ridged connections and column bases via genetic optimization. The
optimization algorithm obtained the minimum total cost which comprised of total
member and connection costs by selecting suitable sections from the AISC wide-flange
(W) shapes. Displacement, stress and size constraints in accordance to the AISC-LRFD
code were imposed on the frame. Comparisons were made between AISC-ASD and
AISC-LRFD and the former code provided lighter structures. They also compared semi-
rigid connections to rigid connections and found that reducing connection stiffness
caused an increase in both frame cost and sway. The reason for these increases is the
more flexible frame the larger the displacements which was compensated by increasing
the member size to stay within code constraints.

Lee and Geem (2005) [10], presented a structural optimization method based on
harmony search meta-heuristic algorithm. The algorithm was conceptualized using the
musical process of Jazz musicians searching for a perfect stat of harmony. The
advantage of HS is that unlike other optimization methods it does not require initial
values and uses a random search routine instead of a gradient search. Several structural

truss examples were present in the study to show the effectiveness and robustness of the
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new approach. The findings showed that the HS can be a powerful search and
optimization method for solving structural engineering problems.

Saka, (2008) [11], researched optimum design of steel sway frames using
harmony search algorithm to British Standard BS5950. The optimum design algorithm
developed imposed behavior and performance constraints in accordance to BS5950.
The optimization routine used standard sections from the Universal beam and column
sections of the Britich Code. Optimization results obtained from the harmony search

algorithm were compared to genetic algorithms and produced lighter results.

2.7 Harmony search algorithm in structural engineering

Harmony search (HS) is a relatively new meta-heuristic search algorithm
developed by Geem et al. [10]. The original purpose for the algorithm was for solving
combinatorial optimization problems in applied mathematics, but it can be adapted to a
wide variety of optimization problems. HS has been applied to a range of civil and
structural engineering problems such as the optimization of trusses, frames, dams, etc.

[12]

2.8 Uncertainty and damage in structural engineering

In its most simplistic form, a structure has been defined as "any assemblage of
materials which is intended to sustain loads". Typically, if an engineering structure fails
it will result in loss of life or at the very least significant injury. For this reason, a great
deal of effort and work goes into the design of a structure so it can properly sustain
prescribed loadings. However, failures still occur. Structural failure can be induced by a
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wide variety of events such as, deterioration of the structure over time (corrosion),
sudden impact damage (blast), natural events (earthquake, tornado, and typhoon) and
improper initial design. [1]

The concept of robustness, redundancy and static indeterminacy are key in many
design philosophies and widely recognized as an important aspect in structural
engineering. However, finding a consistent definition of the redundancy and robustness
can be challenging. For example, the definition of redundancy may be provided in terms
of collapse load, number of plastic hinges, the probability of system failure, etc. Others
tend to use the term redundancy and static indeterminacy interchangeably. It has been
presented that the degree of static indeterminacy does not correlate to structural
redundancy. Structures with lower degree of static indeterminacy can often times have
greater redundancy than their higher degree counter parts. This is due to the fact the
redundancy relies on a wide variety of factors like, member size, material properties,
structural topology, loading sequence and applied loading. Generally, redundancy is the
ability of a structural system to redistribute loads among members that cannot be
sustained by another member due to damage. Whereas, robustness is the ability of a
structural system to sustain a specific amount of damage not disproportionate to the
cause of the damage itself. [13]

All aspects of life come with uncertainty and the same holds true for all sectors
of engineering. Structural engineers make many decisions during the design and

construction of structures. Many of these decisions are made with uncertainty, but not
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often considered due to the uncertainty being accounted for in design codes.
Uncertainties arise in many aspects of structural engineering in the form of nominal
capacities, resistance factors, design loads and load factors. Allowable stress design
utilizes a safety factor to handle these uncertainties whereas load and resistance factor
design has multiple factors. However, not all uncertainty can be accounted for in the
design code. Structural engineers have to be aware of the uncertainty present in their

calculations and be able to account for it accordingly.

2.10 Concluding remarks

Based on the study of several papers, it was concluded that the new meta-heuristics
algorithm harmony search proved to be a powerful tool for optimization of structural
systems. Many of the publications reviewed showed the Frye-Morris polynomial model
provides an accurate representation for moment-rotation connection behavior. Lastly, it
was found that the extended end plate connection is a popular connection used in steel

structures and optimization routines.
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Chapter 3: Optimization

3.1 Introduction

As previously discussed in chapters 1 and 2, mathematical optimization, simply is the
process of making something the best it can possibly be. Traditionally, optimization is
performed using calculus-based methods such as numerical linear and nonlinear
programming methods. These methods require substantial gradient information and can
be sensitive to starting points. They are ideal for obtaining global optimum points in
relatively simple models. However, real-world engineering problems tend to be very
complex in nature and prove hard to solve using traditional methods. More than one
optimal point may be present in these complex problems and the results would be very
sensitive to the selected starting point. The optimal solution may not necessarily be the
global optimum for the problem. In addition to these issues, objective functions and
constraints can have multiple or sharp peaks resulting in difficult or unstable gradient
computations. The drawbacks of traditional techniques led to the need of other
optimization methods. Researchers utilized meta-heuristic algorithms based on
simulations to solve these complex problems. These algorithms are typically based
around natural phenomena and each have a unique set of rules and randomness
intrinsically built in. The following sections provide a brief overview of some of the
more popular meta-heuristic algorithms followed by an in depth explanation of the

harmony search method.
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3.2 Heuristic optimization techniques

Heuristic comes from the Greek work heuriskein, which means to discover. In
optimization, it refers to solution strategy by trial and error to produce a reasonable
solution to complex optimization problems. Due to the complexity of some problems it
would be infeasible to search for all possible solutions, the aim of this strategy is to find
an acceptable solution in a reasonable amount of time. There is no way to know if the
best solution can be found, nor will the algorithm work or why. A heuristic algorithm is
an efficient and practical approach that has been shown to provide good results, but no
guarantee of optimality.

Heuristic algorithms typically fall into three broad categories; simulated annealing,
traditional genetic algorithm and evolutionary algorithms. The last two categories are

very similar but have slight differences in the specifics of the algorithms.

3.2.1 Genetic algorithm (GA)

Genetic algorithms mimic the process of biological evolution in order to solve problems
and to model evolutionary systems. The foundation for GAs revolves around the
premise that over many generations, natural populations evolve according to the
principles of natural selection, survival of the fittest. By replicating this process GAs
are able to "evolve" solutions to real world problems. The main goal of GAs is the
survival of robust solutions and elimination of the weak solutions in a population. GAs
were first proposed by John Holland in the 1960s and further developed by Holland and
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his students [14]. The procedure for the genetic algorithm can be time consuming and
the optimum solution may not be global ones, but they are feasible both mathematically

and practically.

3.2.2 Simulated annealing (SA)

Simulated annealing (SA) is an accepted local-search technique, which utilizes the
analogy between the way metals cool and freeze into a minimum energy crystalline
structure (the annealing process). SA approaches the optimization problem by
navigating the search space iteratively stepping from one solution to another solution. It
begins at a "high" temperature, which enables it to have wide range of solutions so it
can move freely around the solution space. As the temperature declines, it will settle
into a relatively small range, ultimately giving an optimal solution. It was developed in
1983 to deal with highly nonlinear problems by Metropolis et al.. [15], and proposed by

Kirkpatrick et al.. for optimization.

3.2.3 Ant colony optimization algorithm (ACO)

Ant colony optimization (ACO) is an algorithm based off ant methodology for finding
food, and it is used to solve discrete optimization problems. The optimization problem
can be transformed into a problem of finding the best path on a graph. The "ants"
incrementally build solutions by moving among the graph. It utilizes several artificial
characteristics such as memory, visibility and discrete time to come to an optimum
solution. Dorigo et al.. was the first to utilize this method for optimization problems
[16].
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3.2.4 Harmony search optimization algorithm (HS)

Harmony search (HS) is a meta-heuristic algorithm that Geem et al.. developed in 2001
and makes use of the analogy between the performance of musicians and searching for
optimal solutions. When musicians, play a song, he/she selects musical notes to give the
best overall harmony [10,12]. The optimization solution vector is analogous to the
harmony created by the musicians, whereas the musician's improvisations are analogous
to the optimization search schemes. HS algorithm, unlike previous mentioned methods,
does not require initial values for the decision variables. It utilizes a stochastic random
search and has light mathematical requirements so it can easily be adapted to a wide

range of optimization problems [10,12].

3.3 Basic of harmony search algorithm

The definition of harmony is the combination of simultaneously sounded musical notes
to produce chords and chord progressions having a pleasing effect. Do, Re, Mi, Fa, Sol,
La, and Si are notes, which represent a specific singular sound. HS algorithm imitates
musical improvisation process where the musicians try to find a better harmony.
Musicians are always striving to attain the best harmony, which can be accomplished
through numerous practices of changing the notes that are played. Figure 11 gives a

visual representation of the analogy between music and mathematical representation.

3.4 Harmony search optimization algorithm in structural engineering
Figure 12 illustrates the analogy once again in terms of a steel frame design. As
explained by Lee and Geem, harmony memory (HM) is the most crucial part of the HS
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methodology. Geem's inspiration for HS was musically driven, in particular, the
improvisation of jazz music. The method jazz musicians use to select their notes can be
broken down into three different categories; play from memory, play from memory with
a slightly different pitch, or randomly play another note. Utilization of these three
processes makes up the core of the harmony search algorithm [10,12].

Many jazz performances comprise of several musicians each playing a different
instrument, such as a guitarist, saxophonist and a pianist. Each member has a range of
pitches they are capable of playing; guitarist [Do, Re, Mi]; saxophonist [Mi, Fa, Sol];
pianist [Sol, La, Si]. Each one is capable of playing any of their available pitches.
Consider the following notes are played: guitarist Do; saxophonist Mi; pianist Sol. This

would result in a harmony of [Do, Mi, Sol] [10,12].

=) (100,300, 500)

400mm
500mm

= 100mm =300mm = 500mm
Figure 11 - Harmony search analogy [12]
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Figure 12 - Harmony search and steel frames [12]

3.4.1 Initialize the harmony search parameters

Harmony Memory Size (HMS).
Pitch Adjustment Rate (PAR).

Number of Improvisations (NI).

40

Steel Frame Process

and can be adjusted accordingly. These parameters are as followed:

Harmony Memory Consideration Rate (HMCR).

The HS algorithm parameters are selected in the first step. They are problem dependent
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3.4.2 Initialize harmony memory

In the second step, the harmony memory (HM) matrix is randomly generated with
design variables. Each row of the harmony memory matrix contains the values of
design variables which were randomly selected from feasible solutions. The matrix has
N columns where N represents the total number of design variables and it has HMS
rows, which was previously selected. The harmony memory matrix can be seen in

equation 6 [10,12].

[ xi X3 v Xy xy - fGxH 6
xf X5 e Xfo Xy (o f(®)
: : : : - :
RHMS=1 yHMS=1 . HMS-1 HMS-1|_,f(yHMS-1)
[ xHMS XHMS . hms xims |- F(xHMS)

3.4.3 Improvise a new harmony

In the third step, a new harmony vector, x" = (x;, x,, -+, xy) is improvised. There are
three rules to choose a value for each decision variable: memory consideration
(HMCR), pitch adjustment (PAR) and random selection (RN). In harmony memory
considering rate, the value of the first decision variable can be chosen from any discrete
or continuous value in the specified HM range with the probability of HMCR which
varies between 0 and 1. Values of the other decision variables can be chosen in the
same manner. However, there is still a chance where the new value can be randomly

chosen from the entire set possible values with the probability of (1-HMCR) [10,12].

! 1 42 HMS
x| « Xi E{ffi:xi,"',xi }W.p. HMCR 7
x; € X; w.p. (1—HMCR)
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Any component of the new harmony vector, whose value was chosen from the HM, is
then examined to determine whether it should be pitch-adjusted. This operation uses
pitch adjusting parameter (PAR) that sets the rate of pitch-adjustment decision as

follows [10,12]:

, _{ YES w.p. PAR 8
i {NO w.p. (1 — PAR)

If the pitch adjustment decision for x; is yes, x; is replaced with x; (k) (the k" element

in X;), and the pitch-adjusted value of x;(k) becomes

x; < x;(k + c¢) for discrete design variables 9
x; < x; + a for continuous design variables

The algorithm chooses a value form a neighboring index m with the same probability

[10,12].

3.4.4 Update the harmony memory
If the new harmony x' = (x;, x,, -+, xy) is better than the worst harmony in the HM in
terms of objective function value, the new harmony is included in the HM and the

existing worst harmony is excluded from the HM [10,12].

3.4.5 Termination criteria
In the final step, the computation is terminated when the termination criterion is
satisfied, typically a prescribed maximum number of iterations. Otherwise, Steps 3 and

4 are repeated until the termination criteria have been met [10,12]
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3.4.6 Harmony search flow chart

Flow Chart Legend
A;: Descrete size variables (1=1,2, .., n) PVS{*}: Possible value set for A;
HMCR: Harmony memory considering rate nPVS: Number of possible value sets for A
PAR: Pitch adjustmient rate NDHV{*]: Mew discrete harmony vector
HMS: Harmony memary size El: Memaory considerations process
HM({**): Harmony memory EZ: Bitch adjustment process
ran : Bandom number in the range 0.010 1.0 |E3: Randomization process

Table 2 - Harmony search flow chart legend
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Figure 13 - Harmony search flow chart [12]
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3.5  Comparison between harmony search and other optimization techniques

3.5.1 Harmony search example: 10-bar planar truss

s

360 in

Figure 14 - 10 bar truss configuration

The cantilever truss, shown in figure 14, has been previously analyzed using various
mathematical optimization methods. The material density for the truss was 0.1 Ib/in®
and the modulus of elasticity was 10,000 ksi. Stress limitations were +/- 25 ksi, and
displacements at each node were limited to +/- 2.0 inches in both x and y directions.
The loading case used was with two single loads of Q=100 kips. The minimum cross-
sectional area of the members was 0.1in? and there were no maximum area limitations.
Table 1 provides the data from this thesis along with several other publications for the
same configuration. The one of most interest to this paper would be the findings of

Kang Seok Lee [10]. Lee utilized a basic harmony search to find a minimum weight of
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5057.88 Ibs, which is the lowest of all the studies found in this thesis. The same
harmony search methodology was ran using MATLAB for this thesis, it performed
better than most of the other reports, but was unable to replicate the same results Lee
found. The results were very close with only a 0.13% difference. Different formulation
of the constraints and the constraint handling methods could be the reason for the
discrepancy. The MATLAB code ran for this thesis utilized a static penalty function in
the handling of constraints. The harmony search optimization code used for this
problem provided an adequate answer and will be used for the damage tolerant

optimization routines.
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3.6 Damage tolerant optimization

3.6.1 General mathematical formulation
Find:

Design Variables X = [X; X, ... ,X,]" € S 10
That minimizes:

Objective Function: f(X) = [f1(X), f2(X), o , fi(X)s oo, fin CO]T 11
The feasible set S belongs to an n-space determined by a set of equality and inequality
conditions:
Equality g(X) =0 12

Inequality h(X) < Oor >0 13
For damage tolerant optimization the objective function is composed of:

Weight w) 14
Intact Capacity (4N 15
Residual Capacity (Cr) 16
Displacements (A) 17

Damage tolerant objective function:

f(X) = [Wl CU! CR'A]T 18
The design variable vector for a damage tolerant truss system is made up of member
areas

X = [Al,AZ"" ,An]T 19
Bounds can be imposed on the cross-sectional areas resulting in the following feasible
set for damage tolerant optimization

S = {X € R™: Ai,min < Ai < Ai,max i= 1,2, ...,Tl} 20
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The above multi-objective problem can be transformed into a series of single objective

minimization problems using the €-constraint method.

minV 21
Satisfying
Cy = CY 22
Cr=C2 23
Dimax <D}, j=12,..,m 24
Aimin € A; € Aimax, 1=12,..,1 25

The required residual capacity C2 can be varied to cover the entire solution set. For this
study we were focused on the influence of residual capacity requirements on the
optimization results.

Frangopol and Klisinksi proposed a three load level checking design; nominal load
(Qn), ultimate load (Qy), and the residual load (Qg). Nominal and ultimate loads are
used to check the serviceability and ultimate capacity requirements, respectively. The
residual load is used to check the residual capacity requirement under potential future
damage conditions to the structural system. Damage conditions can be represented by
reductions in stiffness of members, complete removal of members, or combination of
these.

In this thesis, damage conditions are assessed by complete removal of a structural
member. The removal of a structural member creates a damaged structural system that
will have a different performance from the original intact structure. This process can be

repeated for every member since it is assumed all damage conditions are equally
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probable. Once the member is removed, the damaged structural system is analyzed to
find out its load capacity. The damage system that provides the lowest capacity will

define the residual capacity of the intact structural system, as follows:

CR = min(Cl, Cz,...,Cl',...,Cn) 17
where C; is the capacity of the structure having member i removed from the system.

This approach is only valid for statically indeterminate structures. Statically
determinate systems require the contribution of all members to function. If a member
was removed from a determinate system it would collapse. Statically indeterminate
structures are inherently redundant. This allows the possible removal of one or more
members from the system without the potential of collapse. Some systems may still
have critical members present that cannot be removed without resulting in a system
collapse. The correct indeterminate configuration must be chosen for the system to

allow the consideration of residual capacity in structural optimization.
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Chapter 4: Structural Reliability

4.1 Introduction

Structural reliability revolves around the uncertainties associated with the design of
structures and assessing the safety of the structure. Reliability is a relatively new
technique in the structural engineering field that became prominent in the 1980's. It was
first implemented in the AISC code in the form of the load resistance factor design
(LRFD) in 1986 as an alternative to the existing allowable stress design (ASD).

Most engineering problems are solved under the assumption of deterministic values (i.e.
no randomness is involved in the value being used). In dealing with real world
problems, uncertainties are unavoidable. Engineers must recognize the presence of
uncertainty and account for it appropriately. Uncertainty can be classified into two
expansive categories: First, those associated with natural randomness (aleatory) and
second those associated with inaccuracies in human prediction and estimations
(epistemic). When engineers are dealing with uncertainty, their goal is to reduce the
total amount present in the current problem. The total uncertainty in a problem is the
combination of both aleatory and epistemic uncertainties. Aleatoric cannot be reduced
due to its intrinsic randomness, i.e., one would be hard pressed to limit the amount of
earthquakes, storms, and other natural events. However, epistemic can be reduced by
increasing our knowledge and providing better estimations and predictions. [17]
Epistemic uncertainty in structural engineering would be material properties such as
yield strength, modulus of elasticity, thickness, etc. The random behavior of the basic
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strength can cause the strength of the structure to vary beyond acceptable limits. To
account for this random behavior one must quantify the uncertainty, or randomness to
account for this fluctuation of material properties. Uncertainty may be calculated using
simulation techniques, such as Monte-Carlo simulation, which allows the values to be
generated based on their statistical distribution (probability density function).
Alternatively, the uncertainty can be estimating via first-order reliability method
(FORM) or second-order reliability method (SORM). [17, 18]

The truss structure is defined as being made up of elements that can be in one of two
states, an initial linear elastic state (safe) or a final zero-stiffness state (failure). This
type of behavior is consistent with brittle material properties. For this type of structure,
one can identify sequences of element failures that would lead to a structural collapse
(failure event). Structural failure will occur if any failure event were to arise, i.e., the
structural failure is a union of all failure sequences. This basic format allows
conventional probability formulations in terms of unions and intersections to be used to
represent the structure failure event. [18]

An individual structural member is considered safe or reliable when the capacity of the
member exceeds the demand being placed on the member. A degree of uncertainty will
be associated with both the load (L) and the resistance (R). To understand the random
nature of L and R the uncertainty must be quantified and evaluated. This is typically
done through a series of test such as the ones performed by Galambos and Ravindra in

1978 on the properties of steel [19]. From these results, probability density functions

52

www.manaraa.com



can be formulated to give a representation of the random properties of the material. The
probability of safe performance (P,) can be expressed as:
PR=P(R>L)=P(R—-L>0)= f i LfR'L(r' Ddrdl
>
where f(r) and f; (1) are the probability density functions of R and L and f; ; (7, 1) is
their joint probability density function. [18]
This concept can be delineated by figure 1 where the independent failure probability of
both the L and the R is shown. If an incremental load value dl is considered, the
probability of the load value falling into the interval dl and the strength value
simultaneously exceeding the load value at that point gives the reliability of that
segment dP, which can be expressed as:
dP, = f,(Ddl [;” fr() dr = f,(Ddl[1 - Fr(D]

where: Fy represents the cumulative distribution function of R and Fx (1) is indicated as
area A, in figure 15. The term f, (1)dl is represented by area, A4;. [18]
Since the reliability of the members involves the probability of the strength exceeding
the load, the total reliability (P;) of the member is expressed as:

Py = [dP =" fi(DIf,” fa(drldl = [ fi(D[1 = Fr(D]dl
Failure is defined as the probability that the member will not survive. This means that
the probability of failure (P;) can be expressed as:

Pr=1-P=1-PR2=2L)=["_fi(DF()dl

The failure probability is often computed from the reliability index .
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Pr = ®(—p) 30
where @ is the distribution function of the standard normal variety. The reliability index
graphically depicts the shortest distance from the origin to a failure surface in standard

normal space. [18]

-
Fil)

Figure 15 - Reliability diagram [18]
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Chapter 5: Modeling of steel structures

51 Introduction

One of the most critical steps in structural analysis is the modeling process of how
members will relate to each other. A model, via finite element analysis software or user
defined code needs to provide an accurate representation of its members and
components to function properly. One of the most difficult parts of structural analysis
is developing a sound and accurate representation of these members. Rarely, if ever, it
is possible to model a structural system exactly as it occurs in nature, the user must
make some general assumptions about how the structure will behave. This assumptions
assume structural material deform according to basic mechanics of materials. The
degree of accuracy typically depends several factors such as the complexity of the

model, time and cost.

5.2 MATLAB

Structural analysis for this thesis was performed in the MATLAB computer program
using the direct stiffness method. Using the stiffness method requires an understanding
of the concept of kinematic degrees of freedom (DOF). The kinematic degrees of
freedom of a body are those motions that describe its position relative to some arbitrary
base position. For example, if we consider a point in Cartesian space we can measure
its movement by three translations u, v, and w in the X, y, and z directions. A rigid body
in space can have rotational movement as well. To consider these movements we need
to measure 0x, 0y, and 0z, the rotations around the X, y, and z axes respectively, to
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completely describe the motion of points on a rigid body. This assumption assumes
rigid body motion. If one were to consider a deformable body, there would be an
infinite number of degrees of freedom. Each point on the body could move relative to
its surrounding points.

When analyzing structures, part of the challenge is to identify which degrees of freedom
are to be used. If the structure is a deformable body with an infinite number of degrees
of freedom, we must choose between "exact methods™ and "approximate or numerical
methods." The exact methods require the solution to differential equations with the
appropriate boundary conditions applied. However, due to complex and irregular shapes
solving these differential equations can be very difficult, if not impossible. This is why
approximate methods are typically used to solve engineering problems.

Classical approximate solutions are usually based on approximating the displacement or
stress fields in the body with series approximations or finite differences. This reduces
the degrees of freedom from infinity to the number of coefficients in the approximating
function. The accuracy of these methods depends heavily on how well the
approximating function simulates the actual solution.

In finite element methods, the structure is approximated as a series of discrete elements
that use various techniques to represent internal behavior associated with the element.
Typically, when representing buildings, bridges, and other structures line elements are
used. These are finite elements with nodes located at each end of the element. The

structural degrees of freedom are all of the element degrees of freedom. This can result
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in a very large number of degrees of freedom. However, with the advancements of

computers large problems can be solved with minimal effort.

5.2.1 Modeling of truss

The forces in a truss element are completely determined if the displacements of the
joints and the axial loads applied directly to the element are known. If we ignore
element loads, the behavior of an entire truss can be determined if displacements of all
the nodes are known; the nodal displacements are the degrees of freedom for
formulating the problem. Truss members are represented by line elements that only

support axial forces.

5.2.2 Modeling of Frame

Planar beam elements have 4 degrees of freedom. When combined with the truss
elements degree of freedom it can be used to represent a frame element with 6 degrees
of freedom (3 per node) capable of recognizing both axial and bending deformations.
However, at the element level, these two basic types of response do not intact with each
other as long as small deflections are considered. Bending of the element does not

change the length of the member.
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5.2.3 Stiffness method flow chart
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Figure 16 - Stiffness method flow chart
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5.2.4 Sources of Nonlinearity

In linear elastic analysis, the materials investigated are assumed linear elastic, meaning
the material is unyielding and its properties unchanging. The equations of equilibrium
are formulated on the geometry of the unloaded initial structural configuration. It
assumes very small subsequent deformations. This approach has the ability to treat axial
force, bending moments and torques as uncoupled actions in stiffness equations.
Several options are available to address the issues from the linear elastic assumptions.
These can be generalized into two categories, geometric nonlinearities and material
nonlinearities. The first category, geometric nonlinearities continues to treat the
structure as an elastic material but includes the effects of deformation and finite
displacements in formulating the equations of equilibrium. The latter category, material

nonlinearity considers the effect of changes in member material properties under load.

5.2.5 Semi-rigid connection nonlinearity

Semi-rigid connections are a source of material nonlinearities. The modeling of semi-
rigid connections is typically handled by modifying the member stiffness matrix to
account for the connection flexibility via end-fixity factors. The implementation of the
concept of end-fixity factor into frame analysis can be done by multiplying the rigid
member stiffness matrix S;, by a correction matrix, C._; seen in equations 31. [6]

KPR =S * Coy 31

59

www.manaraa.com



EA —EA 32
— 0 0 —_— 0 0
L L
12EI 6EI —12EI  6EI
O m 7 ° T T
6EI 4Ei —6EI 2EI
0 - —_— 0 —_—
S — L L 12 L
! —EA 0 0 EA 0 0
L L
—12EI —6EI 12EI —6EI
L3 LZ 0 L3 L2
0 6EI 2EI 0 —6EI 4Ei
L2 L L2 L
33
rl 0 0 0 0 0
41‘2 - 21‘1 + I'11‘2 —2LI‘1(1 - 1'2) 0 0
4 —rqr1, 4 —ryr,
6(r; —13) =3r1(2 —ry) 0 0
C. = L(4 —r;iry) 4 —r1yry
el 710 0 0 1 0 0
4r, — 2r, +ryr, 2Lr,(1-—r
0 0 0 0 1 2 112 2( 1)
4 —r1yry 4 —r1y1y
6(r; —r -3r,(2—-r
0 0 0 0 (r; — 13) 2( 1)
| L(4’ - rlrz) 4’ - 1‘11‘2
where end-fixity factors r; and r, are defined by:
: 34
(G=12)

U7 T4 3E/RL

where end connection spring stiffness, R;, is defined by the Frye and Morris curve
fitting model in chapter 2. To take into account the nonlinear behavior of semi-rigid
connections, an iterative process is used to obtain the solution. In each iteration, the
member stiffness is modified by the correction matrix with updated end-fixity factors ry

and r,. [6]

5.2.6 Geometric nonlinearity
To account for geometric nonlinearities in structural systems a second-order elastic

analysis needs to be performed. For rigid frames, the computer based second-order
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elastic analysis is often done as an iterative procedure and the stiffness matrix of each

member is composed of the elastic stiffness matrix and the geometrical stiffness matrix

as show in equation 35: [6]
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35

36

The geometrical stiffness matrix can also take into account semi-rigid connections with

the addition of a correction matrix, C4_; as seen in the following equations. [6]

[0 0 0 0 0 0
0 1 0 0 0 O]
o c1 c2 0o c3 c4f
G =
i |0 0 0 0 0 O |
l0 0 0 0 1 OJ
0 C5 C6 0 C7 C8
where
Cl=-C3= m(&frz — 13r2r, — 32r2 — 8r2 + 2511, + 20)
112
r
€2 = 5(4_71”)2(16@ + 25r2r, — 96r,1, + 128r; — 28r,)
112
4r, ) )
C4 = m(16r1 —_ 51‘1[‘2 + 91‘11‘2 —_ 281‘1 + 81‘2)
112
C5=-C7 = W(Srgrl —13r?r, — 32r3 — 8r? + 2511, + 20)
12
41y ) )
C6 = m(16r2 — 51'21'1 + 91'11'2 - 281'2 + 81'1)
112
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C8=5(4

5.4  SAP2000

—11)?

Iy

(16r? + 25r2r, — 96r;1, + 1281, — 281y)

43

SAP2000 is a general-purpose engineering software package ideal for analysis and

design of structural systems. It can represent a wide range of systems from basic 2-D

systems to complex 3-D structures. Modeling of the structural elements is typically

handled through a graphical user interface (GUI) that allows the user to define

members, loading, material properties, etc. The user also has the option to edit an input

file to define the structural system.

SAP2000 was utilized to validate the MATLAB model. Both analysis methods were

performed on the three story, two bay frame with semi-rigid connections shown in
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Figure 17 - Frame diagram
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figure 17. The material properties of the structural members were in accordance to the
AISC steel design manual and the modulus of elasticity was set at 30,000ksi for the
analysis.

To account for semi-rigid connections the moment rotation curve shown in figure 18
was used. The moment rotation curve is representative of an extended end plate
connection without column stiffeners and the curve fitting constancies for this
configuration can be seen in table 1 in chapter 2. The end plate was assumed to have a
thickness of 0.685" using 1" diameter bolts with a spacing between bolt groups

equal to the member depths plus 6".
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Figure 13 - Extended end plate moment rotation curve
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SAP2000 does not have the capabilities to specify moment rotation interaction of
connections. Instead, a rotational spring must be used at the connection points to
represent the connection flexibility. For the testing analysis a secant stiffness of
6.35x10° (K.in/rad) was used as the member partial fixity values in both computer

models.

Nonlinear analysis of Semi-rigid Frame

MATLAB SAP2000 Percent Diffrence
u ight
FREDFRRLZREY 112 1.15 2.64%
displacmensat (in.)
Maximum column base
. 919.4 905.61 1.51%
moment (K-in)

Table 4 - Analysis comparison

The results obtained from both models were relatively similar when compared to one

another. The nodal displacements of the MATLAB model were all within 1-3% of the
SAP model. Also, element bending, shear and axial loading vary from about 1-2% of

each other. The results show that the MATLAB model is an acceptable representation

of the structural system and can be used for the optimization process.
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Chapter 6: Design Examples

6.1  Damage tolerant truss

The 10-bar truss configuration [ - - o :

: I.E'] l'_l_?) l?‘:’
shown in figure 2 with three \ As Aa
proportional loads Q will be A; As As A1

As Ac| 100in

analyzed for damage tolerant
optimization as outlined in

' 4 A; — O
Chapter 3. Geometrical, N @ 1"537‘ 1 ®

Q Q

mechanical and loading

Figure 14 - Ten bar truss configuration optimization
characteristic were assumed to be deterministic. The modulus of elasticity was assumed
to be E = 29,000ksi. Each member was assigned its own individual cross sectional area
A as shown in figure 2. The material was assumed to be brittle with yielding stresses
of +/- 25ksi. Buckling constraints were also applied to each individual member. The

minimum and maximum cross-sectional areas were Aimin=0.1 and Aimax=infinity. The

initial cross sectional areas of the truss were set at A; =linch.

6.1.2 Solving damage tolerant optimization problem

The design variables for this problem are restricted to the cross sectional areas of the
structural members. The geometry of the structure and material properties are
considered fixed. The cross sectional areas of the members are the design variables 4;,
subjected to size constraints

Ai,min < Ai < Ai,max ,l = 1, ey n 44
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where A4; i, and A4; 4, are the minimum and maximum member areas, respectively.
In this problem the minimum member area is limited to 0.1 in? and the maximum area is
not limited.

The objective function for the optimization problem is to minimize the volume of the

structure:

45

n
V= Z liai

i=1
where [; is the total length of the members anda; is the corresponding area of the
member. The volume IV can be multiplied by the unit weight of the structure to provide
an adequate assessment of the structures cost. The following constraints must be
satisfied.
Ultimate load carrying capacity requirement:

Cy = CJ 46
where Cy and C? are the actual and the required ultimate load carrying capacity of the
system respectively.

Serviceability requirements:

A; < A, foralli 47
where A; and A? are the maximum and the allowable elastic displacement at section i,
respectively. It is logical to compute the displacements under the nominal load Q.

Residual capacity requirement:

Cr = CQ 48
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where Cx and CJ are the actual and the required residual capacity of the system,
respectively.
Reserve strength factor is defined as:

Ry = Cy/Qn 49
The reserve factor is a measurement of strength that compares the ultimate load to the
nominal loading. The reserve strength factor, R,, can range from value of O when the
intact structure has no loading effect, to a value of 1.0 when the nominal load on the
intact structure equals its capacity, Cy.
Residual strength factor is defined as:

R, = Ci/Cy 50
The residual strength factor, R, is used to show the strength of a structure once it isin a
damage state. This value can range from 0 when the damage structure is collapsed to a
theoretical value of 1.0 when the damage structure can carry the same load capacity as
the intact structure. Frangopol and Klisinski show that for a given structural
configuration, loading and material behavior there is always a maximum value of
residual strength. This is due to the fact that the residual capacity of the structural
system, Cg, cannot increase over a certain threshold without raising the ultimate

capacity of the intact structure, C.

6.1.3 Optimization results
First, the behavior of the initial intact structure was investigated. The initial structure

had a volume of 1165.69in°. Table 5 shows the stress distribution for the intact structure
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along with all (ten) possible damage scenarios. The ultimate capacity of the intact
structure was 11.92 kips and the residual capacity was 5.06 kips. This resulted in a
residual strength factor of 0.425. The governing constraint for the intact ultimate
strength was buckling for member 8. The governing residual capacity was the removal

of member 7; when removed the buckling constraint in member 8 was once again

reached.
10-Bar Truss
Intact and Damaged Trusses: Ultimate Capacities and Associated Stresses
A= Ar=As= A= As= Ag= A= Ag= Ag= Ajp=11in’ ; Vinmacr= 1165.69 in”
Element Load Level Stress In Elements (ksi)
Removed (kips) 1 2 3 4 5 6 7 8 9 10
NONE 11.92 -13.72 3.68 22.04 3.68 1.88 3.68 19.41 -14.31 11.66 -5.20

1 5.06 -—- 0.96 15.18 0.96 6.02 0.96 0.00 -14.31 5.80 -1.35
2 11.44 -12.76 - 21.56 0.00 -1.32 0.00 18.05 -14.31 16.18 0.00
3 5.89 -17.68 2.95 - 2.95 -8.84 2.95 25.00 8.33 4.17 -4.17
4 11.44 -12.76 0.00 21.56 - -1.32 0.00 18.05 -14.31 16.18 0.00
5 13.22 -16.32 3.10 23.34 3.10 - 3.10 23.08 -14.31 14.31 -4.39
6 11.44 -12.76 0.00 21.56 0.00 -1.32 - 18.05 -14.31 16.18 0.00
7 5.06 0.00 0.96 15.18 0.96 6.02 0.96 - -14.31 5.80 -1.35
8 8.84 -17.68 3.50 8.84 3.50 -5.33 3.50 25.00 - 7.54 -4.96
9 10.12 -12.46 10.12 17.90 10.12 7.78 10.12 17.62 -11.00 -—- -14.31
10 11.44 -12.76 0.00 21.56 0.00 -1.32 0.00 18.05 -14.31 16.18 -

Note: Bolded Stress represent failure of corresponding member via stress limits or buckling limits.
Table 5 - Truss damage conditions

An interesting observation happened from the removal of member 5. The ultimate
loading for the truss actually increased due to the distribution of forces shedding load
from the 8" member. This allowed a higher load to be placed on the structure before
the buckling constraint in member 8 was reached.

Next, we will look at the same truss configuration optimized in two different ways. First
it was optimized for minimum volume under ultimate capacity requirements and second
for minimum volume under both ultimate capacity and residual capacity requirements.
The results of these optimizations along with the initial truss results can be found in

table 7.
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The initial truss has a volume of 1165.69 and an ultimate loading of 11.92 kips due to
buckling constraints. The optimized truss for only ultimate loading had a significant
decrease in total volume by over half coming in at 560.40 in®. This truss configuration
sacrifices a significant amount residual capacity from the original intact truss, reducing
the residual capacity of the truss by 70.36%

This brings us to the next optimization routine, to consider both ultimate capacity and
residual capacity of the system. Optimizing the truss with the same ultimate and
residual capacities as the initial structure resulted in a decrease in volume from 1165.69
to0 659.73 or a reduction of 43.4%. The residual capacity was then varied while keeping
the ultimate capacity requirement fix to show different scenarios of optimization. The
truss was able to stay under the initial volume while having a significant increase in
residual strength of the system. These gains become capped at a residual factor of
around 0.71 due to additional increase of the residual capacity results in an increase of

the ultimate capacity. Additional optimizations were run for an increased ultimate

capacity and residual capacity.
Optimized for CU

: H Gradient | Harmony
Due to the low complexity of this problem, both Mothode | Search
. Al 0.4109 0.4067
Harmony Search and Gradient methods were able to be Az | 01000 | 0.2000
A3 1.01595 1.0241
used for minimization. As expected the gradient methods As | oacoo | 0.1002
A5 0.1000 0.1058
provided the global minimum values. The harmony search Af % 82000 | G005
A7 0.5811 0.5748
. . . A8 1.3407 13522
method is a metaherustic algorithm and does not guarantee P e
. ) ) A10 0.1000 | 0.1000

a global optimal solution. However, the search routine was | volume | 560.3992 | 5617650

Table 6 - Optimization comparison
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not far off of the calculus based optimization as seen in table 6. It also implements
stochastic optimization methods making the final solution vary slightly from run to run.
Due to these factors, a majority of the figures and tables were produced with the

calculus methods for more consistent results. The final results for the truss system can

be seen in table 7.

70

www.manharaa.com




10-Bar Truss : Optimization
Volumea “m.’f‘“.“f Ru-ldlfml Residusl
Arsas (in?) (i) Capacity | Capacity |
(kips) (kips)
M‘Az-lﬂa|ﬁ1|ﬁs|$£l--ﬂ?|-ﬁ£|ﬂg Ain v Cu L Rz
Initial
100|100 | 100| 100|100 100]|100]|100]100]100] 116568 1102 | 506 | o042
Optimized for CU
V= Min
Cy= 1152 kips
Dl<fede= =12, ,10
041 | 010 ] 102 | ﬂ.1B| a16 | 210 [ 58 | 1,34 | 0.65 | :uu[ 56044 | 11.82 1.50 013
Optimized for CU and CR
V=3 Min
Cue21192%ips
Cz20QrF
QlgiE= =17, . .10
061 | 020 | 095 | 020|034 | 020|086 | 118 [ 057|039 | 65873 11.92 5.06 D4z
072 | D24 | 020|024 038 | 024 | 102 | 1.03 | 054 | 034 | 68805 11.92 6.00 0.50
D&Y | 028 | 084 | 028| 045|038 (110 | 08y | 051 | 040 | 7i810 11.52 7.00 054
026|032 | 086|032 05t | 032|136 | 091 | 04s | 045 | 79233 11.52 B.00 D57
102 | D34 ) 102 | 034 | 053|034 | 144 | 096 | 048 | 048 | 835.60 11.92 B.50 D71
103|034 | 103 | 034 | 054 | 034 | 1.96 | 097 | D4 | 049 | 24536 11.82 B.60 D72
120 | D40 | 1.20| 040 063 | 040 | 170 | 113|062 | o957 | 9135 15,008 10.00. 0.67
1270 | D40 | 151 | 040 | 066 | 040 | 170 | 1.74 | 0.92 | 057 | 115242 | 20.00 10,60 0.50
Note : Active constraints are indicated in bold
10-Bar Optimization Results
1.80 il
160 pY e -

' i —n2 AL, AR
140
__,.’-"/- — 3

E 120
§ 100 —5
T o8l ',
g 060 —_— ________—__..._—-'-—-=:-—_" —it
0.20 >
0.00 —A10
450 550 6.350 750 E_Eﬂ 2350 1050

Residual Capacity, Cg (Kips)

Table 7 - Truss results

71

www.manharaa.com




6.2  Frame Optimization

The established harmony search optimization algorithm is used to formulate a minimum
weight steel frame design. The constraints imposed on the problem will be in
accordance to the 2005 AISC-LRFD strength requirements, displacement limitations,
and size constraints for beam-column elements. Figure 20 shows the frame
configuration, dimensions, loading and grouping of members. The optimum results
collected from the harmony search optimization consider the design of rigid and semi-
rigid steel connections and account for linear and nonlinear effects. The obtained
results will be compared to an identical structure being optimized with the Genetic
Algorithm Technique. The optimization program has discrete variables, which match

the AISC shape database. All members with a weight less than 200 Ibs were considered

in the 0.17 Kips/in 0.17 Kips/in
4Kips —e SEVEREPREVEIVIIIEY By bbb bebid by
M7 M7
s M6 Ms| 3
0.22 Kips/in 0.22 Kips/in
§Kips —m | SEVEREPREREREbEodE | SR bbd bbb ey |
M7 M7
M3 W3 M3| I
0.22 Kips/in 0.22 Kips/in
§Kips —me | SETEREPEERERIEadd | wh bbb bbb i bbbidy |
M7 M7
M1 M2 M1 ::J-T
mTM 240" m!m 240" o

Figure 20 - Frame configuration
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optimization routine.

6.2.2 Frame design parameters

A36 grade steel

Young's modulus E=30,000ksi

Allowable total drift (H/300) = 1.44"

Allowable interstory drift (h/300) = 0.48"

Allowable beam deflection (L/240) = 1"

Out of plane effective length for columns (Ky) = 1.0

Length of the unbraced compression flange for each column was calculated
during the optimization process.

Floor stringers were assumed to be at L/6 points of the beam span resulting

in the out of plane unbraced length (Ky) = 40"

6.2.3 Harmony search design parameters

The following harmony search parameters were selected based on literature

recommendations and several trials of the problem to achieve the most refined optimal

solution.

Harmony memory size (HMS) - The value for harmony memory was equal
to 25. This value limits the number of solutions stored in algorithm memory.
It was found that a value of 25 had a good tradeoff between run time and

accuracy.
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e Harmony memory consideration rate (HMCR) - The value for the HMCR
was equal to 0.9, which reflects the probability for selecting a value from
memory. Once again, it was found that a 90% consideration rate provided a
good balance between time and accuracy.

e Pitch adjusting rate (PAR) - The pitch-adjusting rate was equal to a value
of 0.45, like the HMCR this value reflects the probability of pitch
adjustment. Increased values of PAR caused the solution to converge on non
optimal designs where as lower values would not converge on the global
maximum.

e Termination criterion - The termination criteria was set as a maximum
number of iterations of 8000. After several trials, it was found that the
solution typically converged around 6000. The run time for 8000 iterations
with the other parameters listed above takes roughly 75 minutes for the
nonlinear analysis. Whereas the linear rigid analysis takes approximately 5
minutes over the same iterations.

e Number of runs - The optimal solution from the harmony search is not a
global optimal. Because of this, the optimal solutions will vary from run to
run. Ten independent runs were performed to get an average minimum

weight structure.
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6.2.2 Objective function
The objective for the optimization process is to achieve a minimum weight steel frame
design. The design variables for this problem are the AISC steel members. The weight

of the frame can be expressed in the following equation:

ng mk
W(x) = Z Ay Z Pi Lj
K=1 i=1

where ng is the total number of member groups, mkrepresents the total number of

51

members in that group. The terms p, Ak, and L; represent member density, area, and

length respectively.

6.2.3 Unconstrained objective penalty function
The unconstrained penalty formula calculates the weight of the new design with an

included penalty if any constraints have violation and can be expressed as:

p(x) =W(@)[1+KC]¢ 52
where K = Penalty constant, C = Constraint violation function and € = Penalty function

exponent. For this design example the values of K=1.0 and € = 2.0 were used

6.2.4 Constraint violation function formula

ne Ng Nne nf nf n 53
C= Zcimd Zc;’d ZCfCZCfb Zcﬁ ZC{
i=1 i=1 i=1 i=1 i=1 i=1

where €™ is the constraint violations for max drift, C/% is the constraint violations for
interstory drift, C“is the constraint violations for column sizes, CS? is the constraint

violations for beam sizes, C# is the constraint violations for deflections and C/ is the
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constraint violations for the LRFD interaction equations. The constraint violations are

determined based on the following equation:

C__{o if ;<0 54
7By if Bj>0
6.2.5 Drift constraints
|A¢] 95
t=——_10< 0
Po= e~ 10
|A;] ) 56
Bt = m— 1.0 <0 i=12,..,n
1

where A, is the maximum top story displacement, A¥ is the allowable top story
displacement, A; is interstory displacement, A¥ is allowable interstory displacement

and ns is the number of stories.

6.2.6 Size constraints

d 57
l.scz —t— 1.0 < 0 l=1;2; yNe
dp
b
isbzﬂ_l_o < 0 i=1,2,...,7’lf >8
b¢s

where d; is the depth of the top compression member, d,, is the depth of the bottom
compression member, by, beam flange width, bis the column flange width, n is the

number of compression members and n is the number of floors.

6.2.7 Deflection constraints
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where dg;, is the deflection of the beam, dj,, is the allowable beam deflection and n;, is

the number of beams.

6.2.8 Strength constraints
Interaction equations from AISC-LRFD were used as the strength constraints for this
problem. Doubly and singly symmetric members in flexure and compression should

comply with AISC equations H1-1a or H1-1b.

P
(a) ForP— >0.2

C

P. 8 M 60
i r ry
="+ (F+—~)-10<0
Bi P, 9(“CX ”>

P
(b) ForP— <0.2

[

61

ﬁll Pr+<%+%

=L -1.0<0
2P, \ M M)

cy
where P. is the required axial compressive strength, P is the available axial compressive

strength, M, is the required flexural strength, M.. is the available flexural strength, x and y refer
to strong and weak axis bending respectively.

Lateral torsional buckling (LTB) should be checked depending on the unbraced length

Ly, as follows:
ML, = L,
M, = M, = F,Z 62
DLy < Lp < Ly,
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63

Lp — L
My = Cp [Mp — (M, = 0.7FyS) ()| S My
r p
(3) Lb > Lr

M, = S4F¢; 65

where

M, = 0.7F,S, 65

66

B 67
Ly = 1761y [

68
E [ e 0.7F, Sychy
L, = 1951 —— 1+ |1+676
r "0 7F, [Sehy | J +6760"
2 I,Cy 69
ts — SX
12.5M
Cp ax <3.0 70

= 2.5Mpay + 3M, + 4Mp, + 3M,

where ¢ equals 1 for doubly symmetric shapes and h,, is the distance between flange

centroids.
6.2.8.1 Column strength

AISC Column strength is computed from the following equations:
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P, = AgFer 71

()KL< 471 |2
d _— . Fy

Fy 72
Fer = |0.658F | F,
(b KL > 471 E
r ' Fy
F., = 0.877F, 73
T2E 74

KL\?
()
where K is the effective length factor. The effective length factor for unbraced

compression flange for each column is calculated throughout the design process from

the following equation:

75

«_ [16GaGs + 4.0(Gp + Gg) + 7.50
B G + Gg + 7.50

where A and B represent the top and bottom of the column and the restraint factor G is

calculated as

F =Z(IC/LC) 76
¢ X(g/Lp)

where I and Izare moment of inertias and L and Lg are unbraced length of the column

and beam respectively.
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6.2.9 Rigid frame results

Ten separate optimization routines were performed for the structural frame with rigid
and semi-rigid connections. From the constraints, it was apparent that the limiting factor
for the frame design was strength constraints for rigid connections and a combination of

strength and displacement for semi-rigid connections. The lateral drift of the structures

were well below acceptable values for Frame Optimization
Rigid Connections
all trials with r|g|d connections. The Frame Analysis Optimum Weight | Max Improvisation
1 6908 3000
. . L. . 2 G461 8000
maximum drift for the rigid design 3 pm 3000
4 6791 8000
was 0.76" while the semi-rigid frame 3 6153 S0
6 6729 8000
v G204 3000
was at 1.43" due to a reduction in the 5 7065 5000
9 6539 3000
frames stiffness. L e Ll
Average {lbs) 6745
Standard Devation (1bs) 213
The program was set with a max Minimum (Ibs) 6430

Table 8 - Rigid frame results

I
T
T
I

Waight (lbs)
ta
|

15} LL -

pgl I I i I I I i _
0 1000 2000 3000 4000 5000 5000 7400 {000

Number of terations

Figure 21 - Harmony search iterations
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iteration of 8000. This value has a Frame Optimization
Semi-Rigid Connections
S . Frame Analysis Optimum Weight | Max Improvisation
lot of control over the optimization 3 =" =
2 B498 BOOO
results as the more iterations the 3 5895 8000
4 6305 BOOO
better chance of 2 L Sy
G 6425 BOOO
7 6331 2000
a lower weight design. However, it 8 65773 8000
9 a031 2000
does have a point of diminishing 3 L2 | £890
Average (lbs) 6501
Staridard Devation {lbs) 265
returns. Several extra hours of Minimum (1bs) 5021

. Table 9 - Semi-rigid frame results
computer time could be needed for a

few extra thousand iterations that

may only improve the final solution by a fraction of a percent. The design results for the
rigid frame and semi-rigid frame analysis are shown in tables 8 and 9 respectively.

The results from table 10 show that harmony search optimization provided a lighter

frame compared to the genetic algorithm used by Saka. The results show a reduction in

MNeon-linear frame analysis
GA (Saka, 2003) HS
Groug| Member
Rigid |Extendedend plate| Rigid |Extended end plate
1 Column W24x55 WILBX36 WI1BX25 WEXLO
2 Column | W18X35 W24¥68 W21X68 W18X50
3 Column WIiGgx31 Wi4x26 WIFK3I0 WIiGX31
4 Column | W18X35 W24Xes VWEX28 WIL0X33
3 Column | WI2x40 WENX1E WI0KIT W1dx27
& Column | W12X35 WILIEXZS WEX3L WEK21
7 B=am WigX26 WIGX26 Wigx31 Wi2xag
Weignt {lbs) 7404 7092 6461 6031

Table 10 - Frame optimization comparison
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weight of 14.9% for the semi-rigid frame and 12.7% for the rigid frame structure. The
results could be improved upon with more efficient harmony search code to allow for a
great amount of iterations.

The code was once again implemented for damage tolerance optimization. Due to the
extreme number of constraints present in a damage tolerant optimization of the frame
structure only one analysis was performed. The same formulation used in the damage
tolerant truss example was used for the frame optimization. The initial conditions from
the previous frame optimization problem were replicated for the damage tolerant truss.
A reduction in member stiffness was used to simulate damage to individual members. In
this example members were reduced to 50% of initial stiffness. The loading for the
damage structure was reduced by 50% to give a residual factor, R, of 0.50. The damage
tolerant simulation run time took approximately 25 hours. Once again, a more efficient
use of code could greatly reduce computational time needed. The damage tolerant frame
was found to have an optimal weight of 7059.9 Ibs. This represents a weight increase of

about 17% over the non-damage tolerant design.
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6.3 Damage Tolerance and Reliability Q . Q )

Using the previously stated reliability _‘l * !
q L A 5
formulation, the five bar truss shown in
figure 22 will be analyzed for reliability. f.‘:-‘ (s
A‘t A!

As mentioned earlier, this truss

| wa |
[w]

configuration has been optimized for

several loading conditions in another

report. The member areas used for this : 10 in -
Figure 22 - 5 bar truss

problem are highlighted in table 11. The

Optimizztion Based On Ultimats Capacity and Residual Capadity |

material properties of the structure ltimate | Residual Area [in2) qu
Capactly | Capactly . Yo Factor
resemble brittle behavior with a S I L I )
825 | 2477 | 0851 | 0248 | 009 | 494935 | 0390
compressive stress limit of -10 ksi and a 825 | 330 | 0969 | 033 | 0985 | 499757 | 0400
Bi%6 | 31535 | 096 | 1335 fiand | S00D6S | 0428
tensile stress limit of 20 ksi. The modulus  § 825 | &128 | 0846 | 0413 | LI6F | 560609 | 0500
REIT | A58 | D991 | D495 | 1401 | Ga3unl| Uons
of elasticity was deemed deterministic and [ 19474 | 5778 | 1156 | 0578 | 1643 | 751189 0562

11743 | BEDS | 1321 | 06BL | 1868 | BSESEY| 0562

Table 12 - 5 bar optimization results

fixed at 29,000 ksi. The truss has an

Mean
Random |Distribution Val Coefficient
. . . alue
ultimate capacity of 8.256 kips and a Variables| Type (ki) of Variation
residual capacity of 4.128 kips. This 6, |lognormal) 20 0.11
o, Lognormal 20 0.11
allows the structure to support a load of o. Lognormal | 20 0.11
4.128 kips after the complete loss of any % Lagnorrmal 20 g
o Lognormal 20 0.11
member. The random variables used for Q, Normal |1t08.256 0.2
Q Normal |1to8.256 0.2

Table 11 - Random variables
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this example can be seen in table 12.

A hr2 hr |'|—|-1:}
To determine the system reliability, Ly )f FIEW,; {l E4[Fi 4i—| F51F1

there needs to be a mathematical model | |2 "H“ £

representing the behavior of the system

-1 B | [% T

S e ey
and the relationship of its components o IETEE o NI e DT g

with respect to the overall system. This D_[: J{: ﬂ :}
r” 4 F2|Fd FijFa |J~
is accomplished by considering all i
P y g y—| T D
E = 5 H Ham

structure. The five bar truss is statically indeterminate to the first degree. This results in

possible failure modes present to the

Fl?ure 23 - Series parallel model
the configuration needing two members to fail to have a complete structural failure.

From this, we can create a series-parallel model for the truss. In this figure, the failure
of each individual member is represented by the termF (i). With the intersecting
probabilities being represented byF (i) |F (j), which means the failure of member "i"
given member "j" has already failed. In total, we should have twenty-five failure paths
for this structure. However, when a member is removed, forces throughout the system
are redistributed. This can be seen in the removal of member 2, which results in no
force present in the fifth member. A zero force member is present once again after the
removal of the fifth member. This reduces the total number of failure paths by two with
giving a total of twenty-three as shown in figure 23. [2]

The truss reliability was computed using RELSYS (RELiability of SYStems), a

FORTRAN 77 computer program developed by Estes and Frangopol in (1998). The
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program works by first computing the reliability of all the system components in a
given series-parallel system. The system is then continuously reduced to equivalent
components until it is left with one component for the entire system. Series and parallel
events are solved separately and equivalent alpha vectors are used to account for the
correlation between failure events. [18]

For the truss series parallel system shown, 19 reductions were needed to find the overall
system reliability. First, the 18 parallel failure events shown were reduced to a
corresponding equivalent event, then the 18 equivalent failure events are represented in
a series configuration, which was reduced once again to find the overall failure event.
The truss system reliability index and failure probability for several loading magnitudes
can be seen in figure 24 and 25 respectively.

As expected probability of the system failing under the 4.128 kip loading was extremely

small, so small it can be considered as zero. This trend continued up until a loading of 5

Reliability Index Probability of Failure
L |
10 1.0
= £o3
j'ﬁ é 0.6
z5 £ "
= ° /
S N >0.4
© £
: - s /
80.2 /
7\1\ £ "/|
0 | 00 —— =
0o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
Loading (kips) Loading (kips)
Correlation =0 Correlation = 0.5 = Correlation = 0 Correlation = 0.5
Correlation =1.0 Correlation =1.0
Figure 24 - Reliability index Figure 25 - Probability of failure
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kips. Once the loading surpassed the 5-kip threshold, the probability of failure starts to

rise. The ultimate load of the structure at 8.256 kips had a probability of failure right

around 50% and a corresponding reliability index of 0.0.

Correlation between random variables will affect the overall truss reliability.

Correlation between the resistances was varied from uncorrelated (Pai,a,- = 0.0), 50%

correlated (paiﬁj = 0.5) and fully correlated (Pai,a,- = 1.0). Results for each case were

plotted and are the results were relatively similar for each correlation case. Full

correlation between stresses resulted in the highest reliability index whereas the

uncorrelated results gave the lowest reliability index. The effects of correlation

between other random variables for the system could also be investigated. This shows

the importance of accurately representing the problem data to achieve proper reliability

results.

6.3.1 Effects of Damage

There are several definitions of structural
damage. The term can be defined as any
strength deficiency introduced during the
design or construction phase of the
structure as well as any deterioration of
strength caused by external loading

and/or environmental conditions during

Cross-

saction Performance

1]

o &d

20

0.40 Q.80 .80 .00
Da mage

Figure 26 - Damage effects
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the lifetime of the structure. For this example, we will investigate the effects of local
damage to specific truss members. The damage has been classified using a damage
index associated with the progressive deterioration of the member properties (area).
This damage index can range from 0 < § < 1, with zero representing no damage and
one representing complete loss of member. The relationship between cross sectional
performance and the damage index relationship can be seen in figure26. For a circular
cross-section undergoing uniform damage on the external boundary, the initial area will
be reduced by the following equation:
Ap = (1—8)% %4 77
5§=t/r 78
where, A, is the damaged cross-sectional area and A4, is the initial area.
Using this representation of damage, each member of the truss was subjected to
the full range of damage and the corresponding reliability index was calculated, figure

27. The loading on the truss was

. . . Reliability Index After Member D
considered fixed at 3 Kips for the ela "_y n ex_ er em_er amage
g (loading = 3 kips, Correlation = 0.0)
damage conditions. This will
=) L~ - —
< 6 N N | —
. _— . x
ensure that the reliability index g \
£ 34
f the system will be greater than £ O
orine sy J 3 N
zero. It can be seen that damage &
0
to members 1 and 2 result in 0.0 0.2 0.4 0.6 0.8 1.0
Damage Index (8)
e Bar ] e Bar 2 Bar 3 e==——Bar 4 ==—=Bar 5

Figure 27 - Damage reliability index
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small reduction to the reliability index. Actually, when these members are only slightly
damaged the reliability index increases slightly due to the loadings being redistributed
to other members. The members that are of interest would be members 3 and 4 since
damage to these members cause a significant reduction in the reliability index. It is
interesting to note that member 3 should be the first member to fail in the system;
however, it does not have the lowest reliability index due to damage. Damage to
member 4 actually results in the greatest reduction to the reliability index. This is due to
the redistribution of loads when member 4 is removed. The removal of the fourth
member puts member 2 and 3 into a significant amount of axial compression resulting
in higher failure probabilities for these members. Whereas, the removal of member 3

only puts member 4 into a large amount of axial compress.

6.3.2 Measure of Redundancy

Several methods for the quantification of structural redundancy are presented in
Frangopol and Curley (1987) and Fu and Frangopol (1990) [2]. The method adapted for
this thesis was the probabilistic redundant index approach. This can be expressed by
the following equations:

— ﬁintact 79
(ﬁintact - .Bdamaged)

Br
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where, Bintact represents the

o _ Probabilisticredundantindex
reliability index of the intact ]
é’lﬂ i- Ear;'aﬂ_gcﬂemzse ‘
system; and Bamage g2
.E- ta | Fail af Bzr 1
represents the reliability index " | Failure ofBar3
36—
E |
for the damaged system. The =4
- . |
probabilistic redundant index L: . _
a.00 100 200 300 404 00 500 700
. o Reliability Index [B)
Br varies from zero to infinity.

Figure 28 - Redundancy index
With zero indicating a structural collapse and infinity an intact structure. The

probabilistic redundancy index for this problem can be seen in figure 28.

An approach to calculating component and system reliability of trusses has been
presented. The techniques to quantify and account random variables, redundancy and
damage are covered. The optimization methods used in previous work provided good
results and correlated with the findings of this thesis. Probabilistic concepts should be
utilized when dealing with unknown variables and behavior of the structure needs to be

looked at beyond single-element failures by looking at complete structural failure.
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Chapter 7: Conclusion

The goal of this research to develop a computer model capable of optimizing the weight
of various steel structures has been presented. The recent developments in meta-
heuristic optimization algorithms have provided researchers with a wide variety of
acceptable methods for optimization. The harmony search algorithm proved to be a well
suitable approach for structural optimization. Due to its stochastic random searches,
derivative information is unnecessary which allows for the algorithm to easily be
implemented. Further research is being done to improve upon this relatively new
technique. New approaches have the algorithm constantly changing the search
parameters in real time during the optimization process allowing for a more successful
code.

The optimum design of steel structures using harmony search algorithm has provided
three minimum weight structures. This technique can be very beneficial to both clients
and designers from a cost standpoint. The ability to provide a minimum weight deign
can be correlated to a reduced cost of the structural system. The designer can also
consider damage tolerance in his/her design with minimal change to the original coding.
As seen a minimal amount of weight increase could lead to improved structural
performance.

Further work could be done to improve the harmony search coding algorithm to

increase speed and performance. Also, damage conditions considered in these examples
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were simplistic. Therefore, further research could be performed to provide a more

accurate representation of damage.

Chapter 8: Researcher's Biography
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structural systems. He chose to pursue the Structural Option within the Architectural
Engineering Program. After graduation from Penn State, Bryan decided to continue his
education in the structural field and pursue a Master's of Science in Structural
Engineering from Lehigh University.
Bryan currently resides in Hackensack, NJ with his fiancée, Carrie Landis. In early
2014, Bryan ventured out of academia and into the professional world of engineering.
He is currently a full time Jr. Engineer at McLaren Engineering. He hopes to continue
with his professional development and work towards receiving his Professional

Engineering license in the future.
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Appendix A - W-Shape Selection List
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26800

15800

9410

15000

21300

9940

16000
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76

77

78

79

80

81

82

83

84

85

86

87

88

89

920

91

92

93

94

95

96

97

98

99

101

102

103

104

105

107

108

109

110

111

112

113

114

W30X90

W16X89

W10X88

W12X87

W18X86

W27X84

W24X84

W21X83

W14X82

W12X79

W10X77

W16X77

W24X76

W18X76

W14X74

W21X73

W12X72

W18X71

W24X68

W21X68

W14X68

W10X68

W8Xe67

W16X67

W18X65

W12X65

W21X62

W24X62

W14X61

W10X60

W18X60

W8X58

W12X58

W16X57

W21X57

W24X55

W21X55

W18X55

W10X54

90.0

89.0

88.0

87.0

86.0

84.0

84.0

83.0

82.0

79.0

77.0

77.0

76.0

74.0

73.0

72.0

71.0

68.0

68.0

68.0

68.0

67.0

67.0

65.0

65.0

62.0

62.0

61.0

60.0

60.0

58.0

58.0

57.0

57.0

55.0

55.0

55.0

54.0

26.3

26.2

26.0

25.6

253

24.7

24.7

24.4

24.0

23.2

22.7

22,6

224

223

21.8

215

211

20.9

20.1

20.0

20.0

19.9

19.7

19.6

19.1

19.1

183

18.2

17.9

17.7

17.1

17.0

16.8

16.7

16.2

16.2

16.2

15.8

29.5

16.8

10.8

12.5

18.4

26.7

241

21.4

14.3

124

10.6

16.5

18.2

14.2

21.2

12.3

18.5

23.7

21.1

14.0

10.4

9.00

16.3

12.1

21.0

23.7

13.9

10.2

18.2

8.75

12.2

16.4

211

236

20.8

18.1

10.1

10.4

10.4

10.3

121

111

10.0

9.02

8.36

10.1

121

10.2

10.3

8.99

11.0

10.1

8.30

12.0

7.64

8.97

8.27

10.0

10.1

8.28

10.2

7.59

12.0

8.24

7.04

10.0

10.1

7.56

8.22

10.0

7.12

6.56

7.01

8.22

7.53

10.0

0.470

0.525

0.605

0.515

0.480

0.460

0.470

0.515

0.510

0.470

0.530

0.455

0.440

0.425

0.450

0.455

0.430

0.495

0.415

0.430

0.415

0.470

0.570

0.395

0.450

0.390

0.400

0.430

0.375

0.420

0.415

0.510

0.360

0.430

0.405

0.395

0.375

0.390

0.370

0.610

0.875

0.990

0.810

0.770

0.640

0.770

0.835

0.855

0.735

0.870

0.760

0.680

0.680

0.785

0.740

0.670

0.810

0.585

0.685

0.720

0.770

0.935

0.665

0.750

0.605

0.615

0.590

0.645

0.680

0.695

0.810

0.640

0.715

0.650

0.505

0.522

0.630

0.615

8.52

5.92

5.18

7.48

7.20

7.78

5.86

5.00

5.92

8.22

5.86

6.77

8.11

6.41

5.60

8.99

4.71

6.04

6.97

6.58

4.43

7.70

5.06

9.92

6.70

5.97

7.75

7.41

5.44

5.07

7.82

4.98

5.04

6.94

7.87

5.98

8.15

57.5
27.0
13.0
18.9
334
52.7
45.9
36.4
224
20.7
14.8

312

37.8
25.4
41.2
226
324
52.0
43.6
27.5
16.7
1.1
359
35.7
24.9
46.9
50.1
30.4
18.7
38.7
12.4
27.0
33.0
46.3
54.6
50.0
41.1

21.2

99

3610

1300

534

740

1530

2850

2370

1830

881

662

455

1110

2100

1330

795

1600

597

1170

1830

1480

722

394

272

954

1070

533

1330

1550

640

341

984

228

475

758

1170

1350

1140

890

303

283

175

113

132

186

244

224

196

139

119

97.6

150

163

126

172

108

146

177

160

115

85.3

70.1

130

96.8

144

153

102

74.6

123

59.8

86.4

105

129

134

126

112

66.6

245

155

98.5

118

166

213

196

171

123

107

85.9

134

176

146

112

151

97.4

127

154

140

103

75.7

60.4

117

117

87.9

127

131

92.1

66.7

52.0

78.0

92.2

111

114

110

98.3

60.0

11.7

7.05

4.54

5.38

7.77

10.7

9.79

8.67

6.05

534

4.49

7.00

9.69

7.73

6.04

8.64

531

7.50

9.55

8.60

6.01

4.44

3.72

6.96

7.49

5.28

8.54

9.23

5.98

4.39

7.47

3.65

5.28

6.72

8.36

9.11

8.40

7.41

4.37

115

163

179

241

175

106

94.4

81.4

148

216

154

138

82.5

152

134

70.6

195

60.3

70.4

64.7

121

134

88.6

119

54.8

174

57.5

345

107

116

50.1

75.1

107

43.1

30.6

29.1

48.4

44.9

103

34.7

48.1

53.1

60.4

48.4

33.2

32,6

30.5

44.8

54.3

45.9

41.1

42.2

40.5

26.6

49.2

24.7

24.5

24.4

36.9

40.1

32.7

35.5

225

44.1

21.7

15.7

32.8

35.0

27.9

325

189

14.8

133

18.4

185

313

221

31.4

34.8

39.7

31.6

21.2

209

19.5

293

35.8

30.1

26.9

18.4

27.6

26.6

17.0

324

15.8

15.7

15.7

242

26.4

214

232

29.1

14.0

9.80

215

23.0

18.3

214

121

9.35

8.30

11.8

11.9

20.6

2.09

2.49

2.63

3.07

2.63

2.07

1.95

1.83

2.48

3.05

2.60

247

1.92

2.61

2.48

1.81

3.04

1.70

1.87

1.80

2.46

2.59

212

2.46

3.02

1.77

1.38

2.45

2.57

2.10

2,51

1.60

1.35

1.34

1.73

1.67

2.56

2.84

5.45

7.53

5.10

4.10

2.81

3.70

4.34

5.07

3.84

5.11

3.57

2.83

3.87

3.02

2.93

3.49

1.87

2.45

3.01

3.56

5.05

2.39

2.18

1.83

171

2.19

2.48

217

3.33

2.10

2.22

1.77

118

1.24

1.66

1.82

24000

10200

4330

8270

13600

17900

12800

8630

6710

7330

3630

8590

11100

11700

5990

7410

6540

4700

9430

6760

5380

3100

1440

7300

4240

5780

5960

4620

4710

2640

3850

1180

3570

2660

3190

3870

4980

3430

2320
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115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

134

135

136

137

138

140

141

142

143

144

146

147

148

149

150

151

152

153

W14X53

W12X53

W21X50

W18X50

W16X50

W12X50

W10x49

W21X48

W14X48

W8X48

W18X46

W16X45

W10x45

W12X45

W21x44

W14x43

W18X40

W16X40

W12X40

W8X40

W10X39

W14X38

W16X36

W18X35

W12X35

W8X35

W14X34

W10X33

W16Xx31

W8x31

W14X30

W10X30

W12X30

W8X28

W14X26

W16X26

W12X26

W10X26

W8Xx24

53.0

53.0

50.0

50.0

50.0

50.0

49.0

48.0

48.0

48.0

46.0

45.0

45.0

44.0

43.0

40.0

40.0

40.0

39.0

38.0

36.0

35.0

35.0

35.0

34.0

33.0

31.0

31.0

30.0

30.0

30.0

28.0

26.0

26.0

26.0

26.0

24.0

15.6

15.6

14.7

14.7

14.7

14.6

14.4

14.1

14.1

14.1

135

133

13.1

13.0

12.6

11.8

11.8

11.7

11.7

115

11.2

10.6

10.3

10.3

10.0

9.71

9.13

9.13

8.85

8.84

8.79

8.25

7.69

7.68

7.65

7.61

7.08

13.9

121

20.8

18.0

16.3

12.2

10.0

20.6

13.8

8.50

18.1

16.1

10.1

12.1

20.7

13.7

17.9

16.0

11.9

8.25

9.92

14.1

15.9

17.7

12,5

8.12

14.0

9.73

15.9

8.00

10.5

12.3

8.06

13.9

15.7

122

10.3

7.93

8.06

10.0

6.53

7.50

7.07

8.08

10.0

8.14

8.03

8.11

6.06

7.04

8.05

6.50

8.00

6.02

7.00

8.01

8.07

7.99

6.77

6.99

6.00

6.56

8.02

6.75

7.96

5.53

8.00

6.73

5.81

6.52

6.54

5.03

5.50

6.49

5.77

6.50

0.370

0.345

0.380

0.355

0.380

0.370

0.340

0.350

0.340

0.400

0.360

0.345

0.350

0.335

0.350

0.305

0.315

0.305

0.295

0.360

0.315

0.310

0.295

0.300

0.300

0.310

0.285

0.290

0.275

0.285

0.270

0.300

0.260

0.285

0.255

0.250

0.230

0.260

0.245

0.660

0.575

0.535

0.570

0.630

0.640

0.560

0.430

0.595

0.685

0.605

0.565

0.620

0.575

0.450

0.530

0.525

0.505

0.515

0.560

0.530

0.515

0.430

0.425

0.520

0.495

0.455

0.435

0.440

0.435

0.385

0.510

0.440

0.465

0.420

0.345

0.380

0.440

0.400

6.11

8.69

6.10

6.57

5.61

6.31

8.93

9.47

6.75

5.92

5.01

6.23

6.47

7.00

7.22

7.54

573

6.93

7.77

7.21

7.53

6.57

8.12

7.06

6.31

8.10

7.41

9.15

6.28

9.19

8.74

5.70

7.41

7.03

598

7.97

8.54

6.56

8.12

30.9
28.1
294
452
37.4
26.8
231
53.6
336
15.9
246
411
225
29.6
53.6
37.4
50.9
265
336
17.6
25.0
39.6
481
535
36.2
205
431
27.1
51.6
223
45.4
295
7038
223
481
56.8
47.2
34.0

25.9

100

541

425

984

800

659

391

272

959

484

184

712

586

248

348

843

428

612

518

307

146

209

385

448

510

127

340

171

375

110

291

170

238

98.0

245

301

204

144

82.7

87.1

77.9

110

101

92.0

71.9

60.4

107

78.4

49.0

90.7

82.3

54.9

64.2

95.4

69.6

78.4

73.0

57.0

39.8

46.8

61.5

64.0

66.5

51.2

34.7

54.6

38.8

54.0

30.4

47.3

36.6

43.1

27.2

40.2

44.2

37.2

313

23.1

77.8

70.6

94.5

88.9

81.0

64.2

54.6

93.0

70.2

43.2

78.8

72.7

49.1

57.7

81.6

62.6

68.4

64.7

51.5

355

42.1

54.6

56.5

57.6

45.6

31.2

48.6

35.0

47.2

27.5

42.0

324

38.6

24.3

353

38.4

334

279

20.9

5.89

523

8.18

7.38

6.68

5.18

4.35

8.24

5.85

361

7.25

6.65

4.32

5.15

8.06

5.82

7.21

6.63

513

3.53

4.27

5.87

6.51

7.04

525

3.51

5.83

4.19

6.41

3.47

573

4.38

5.21

3.45

5.65

6.26

517

4.35

3.42

57.7

95.8

249

40.1

37.2

56.3

93.4

38.7

51.4

60.9

225

32.8

50.0

20.7

45.2

19.1

28.9

44.1

49.1

45.0

26.7

24.5

15.3

42.6

233

36.6

12.4

37.1

16.7

20.3

21.7

8.91

9.59

173

14.1

183

22.0

29.1

12.2

16.6

16.3

213

28.3

14.9

19.6

22,9

11.7

14.5

19.0

10.2

17.3

10.0

12.7

18.5

17.2

12.1

10.8

8.06

11.5

16.1

10.6

14.0

7.03

14.1

8.99

8.84

9.56

10.1

5.54

5.48

8.17

7.50

8.57

14.3

19.2

7.64

10.7

10.5

13.9

18.7

9.52

12.8

15.0

7.43

9.34

12.4

6.37

113

6.35

8.25

11.0

12.2

113

7.88

7.00

5.12

7.47

10.6

6.91

9.20

4.49

9.27

5.82

5.75

6.24

6.63

3.55

3.49

5.34

4.89

5.63

1.92

2.48

1.30

1.65

1.59

1.96

2.54

1.66

191

2.08

1.29

1.57

2.01

1.95

1.26

1.89

1.27

1.57

1.94

2.04

1.98

1.55

1.52

1.22

2.03

1.53

1.94

117

2.02

137

1.52

1.62

1.08

112

1.51

1.36

1.61

194

1.58

114

1.24

152

1.71

139

0.803

1.45

1.96

1.22

111

151

1.26

0.770

1.05

0.810

0.794

0.906

112

0.976

0.798

0.545

0.506

0.741

0.769

0.569

0.583

0.461

0.536

0.380

0.622

0.457

0.537

0.358

0.262

0.300

0.402

0.346

2540

3160

2570

3040

2270

1880

2070

3950

2240

931

1720

1990

1200

1650

2110

1950

1440

1730

1440

726

992

1230

1460

1140

879

619

1070

791

739

530

887

414

720

312

405

565

607

345

259
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154 W14X22 22.0 6.49 13.7 5.00 0.230 0.335 7.46 53.3 199 33.2 29.0 5.54 7.00 4.39 2.80 1.04 0.208 314

155 W10X22 22.0 6.49 10.2 5.75 0.240 0.360 7.99 36.9 118 26.0 23.2 4.27 11.4 6.10 3.97 1.33 0.239 275
156 W12X22 22.0 6.48 123 4.03 0.260 0.425 4.74 41.8 156 29.3 25.4 4.91 4.66 3.66 231 0.848 0.293 164
157 W8x21 21.0 6.16 8.28 5.27 0.250 0.400 6.59 27.5 75.3 20.4 18.2 3.49 9.77 5.69 371 1.26 0.282 152
158 W10X19 19.0 5.62 10.2 4.02 0.250 0.395 5.09 35.4 96.3 21.6 18.8 4.14 4.29 3.35 2.14 0.874 0.233 104
159 W12X19 19.0 5.57 12.2 4.01 0.235 0.350 572 46.2 130 24.7 21.3 4.82 3.76 2.98 1.88 0.822 0.180 131
160 W8X18 18.0 5.26 8.14 525 0.230 0.330 7.95 29.9 61.9 17.0 15.2 3.43 7.97 4.66 3.04 1.23 0.172 122
161 W10X17 17.0 499 10.1 4.01 0.240 0.330 6.08 36.9 81.9 18.7 16.2 4.05 3.56 2.80 1.78 0.845 0.156 85.1
162 W12X16 16.0 471 12.0 3.99 0.220 0.265 7.53 49.4 103 20.1 17.1 4.67 2.82 2.26 141 0.773 0.103 96.9
163 W8X15 15.0 4.44 8.11 4.02 0.245 0.315 6.37 28.1 48.0 13.6 11.8 3.29 3.41 2.67 1.70 0.876 0.137 51.8
164 W10X15 150 441 9.99 4.00 0.230 0.270 7.41 38.5 68.9 16.0 13.8 3.95 2.89 2.30 1.45 0.810 0.104 68.3
165 W12X14 140 416 11.9 3.97 0.200 0.225 8.82 54.3 88.6 17.4 14.9 4.62 2.36 1.90 1.19 0.753 0.0704 80.4

166 W8X13 13.0 384 7.99 400 0230 0.255 7.84 29.9 39.6 114 9.91 3.21 2.73 2.15 1.37 0.843 0.0871 40.8
167 W10X12 120 354 987 396 019 0210 9.43 46.6 53.8 12.6 10.9 3.90 2.18 1.74 1.10 0.785 0.0547 50.9

168 W8X10 100 296 7.89 394 0170 0.205 9.61 40.5 30.8 8.87 7.81 3.22 2.09 1.66 1.06 0.841 0.0426 30.9
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Appendix B - Harmony Search Sample Frame MATLAB Optimization Code

clear all; clc; close all;

tic;

[numerics, strings]=xlsread('Full Catalog Section');
FCS=numerics(:,3:20);

IbeamStr=strings(2:169,1);

NVAR=T7; % number of variables

NG=36; % number of ineguality constraints

NH=0; % number of eguality constraints
MaxItr=8000; % maximum number of iterations

HMS=25; % harmony memory size

HMCR=0.9; % harmony consideration rate 0< HMCR <1
PAR=0.45; % minumum pitch adjusting rate

ro=0.28359924220274; %density of steel 1b/in3
for kk=1:10
% initialize random HM
for i=1:HMS
for j=1:NVAR;
k=randi (length (IbeamStr)) ;
HM (i, j)=IbeamStr (k) ;
end
for j=1:NVAR
Z=strcmp (IbeamStr,HM (i, J)) ;
[r,c]=find (Z2) ;
end
for j=1:NVAR;
Z=strcmp (IbeamStr,HM (i, j));
[r,c]l=find (Z) ;
HMnew (i, j)=r;
end

area=[FCS (HMnew (i, 1), 2);FCS (HMnew (i,2),2) ;FCS (HMnew (i,3),2) ;FCS (HMnew (
i,4),2);FCS(HMnew(i,5),2);FCS(HMnew (i, 6),2);FCS(HMnew (i, 7),2)1;

depth=[FCS (HMnew (i,1),3) ;FCS (HMnew (i, 2),3) ;FCS (HMnew (i, 3), 3) ; FCS (HMnew
(i,4),3);FCS (HMnew (i,5),3) ;FCS (HMnew (i, 6),3) ; FCS (HMnew (1,7),3) 1,

flange width=[FCS (HMnew (i,1),4);FCS (HMnew(i,2),4);FCS(HMnew(i,3),4);FC
S (HMnew (i, 4),4);FCS (HMnew (i, 5),4) ;FCS (HMnew (i,6),4) ;FCS (HMnew (i, 7),4)]
web thickness=[FCS (HMnew (i, 1),5);FCS (HMnew(i,2),5);FCS(HMnew(i,3),5) ;F
CS (HMnew (i, 4),5) ; FCS (HMnew (i, 5),5) ; FCS (HMnew (i, 6),5) ; FCS (HMnew (i, 7),5)
1;

flange thickness=[FCS (HMnew (i,1),6);FCS (HMnew(i,2),6);FCS(HMnew(i,3),6

102

www.manharaa.com




) ; FCS (HMnew (i, 4), 6) ; FCS (HMnew (1, 5) ,6) ; FCS (HMnew (i, 6), 6) ; FCS (HMnew (i, 7)
16)];

inertia=[FCS (HMnew (i,1),9) ;FCS (HMnew(i,2),9);FCS (HMnew (i, 3),9);FCS (HMn
ew(i,4),9);FCS(HMnew (i, 5),9);FCS (HMnew(i,6),9);FCS (HMnew(i,7),9)];
[D,A,Max,Ma,Mb,Mc]=NLstiffness (area, inertia,depth,web thickness);

[Cl=constraint (depth,web thickness, flange width, flange thickness,Max,M
a,Mb,Mc,D,A,inertia);

score (i)=fitness (FCS (HMnew(i,1),2),FCS (HMnew(i,2),2),FCS (HMnew (i,3),2)
,FCS (HMnew (i,4),2),FCS (HMnew(i,5),2),FCS (HMnew (i, 6),2),FCS (HMnew(i,7),
2),ro,C);

end

[worstcost worst]=max (score);
HM
score'

[

% MainHarmony

for t=1:MaxItr;
Scountt=t
for i=1:NVAR;
ranl=rand(1l) ;
if (ranl < HMCR);
index = randi (HMS, 1) ;
NCHV (i) = HM(index,1i);
ran2=rand (1) ;
if (ran2 < PAR);
NCHV=NCHV;
if(ran2 < 0.5);
Z=strcmp (IbeamStr,NCHV (i) ) ;
[r,c]=find (Z2) ;
if (r < 168) ;
NCHV (i) =IbeamStr (r+1) ;
elseif (r < 167)
NCHV (i) =IbeamStr (r+2) ;
else
NCHV (i) =IbeamStr (r) ;
end
else
Z=strcmp (IbeamStr,NCHV (i) ) ;
[r,c]=find (Z2) ;
if (r > 1)
NCHV (i) =IbeamStr (r-1) ;
elseif (r > 2)
NCHV (i) =IbeamStr (r-2);
else
NCHV (i) =IbeamStr (r) ;
end
end
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end
else
k=randi (length (IbeamStr)) ;
NCHV (i) =IbeamStr (k) ;
end
end

for g=1:NVAR
Z=strcmp (IbeamStr,NCHV (g)) ;
[r,c]l=find (Z) ;
NCHVnew (g) =r;
end

areal=[FCS (NCHVnew (1), 2) ;FCS (NCHVnew (2),2) ;FCS (NCHVnew (3),2) ; FCS (NCHVn
ew(4),2);FCS(NCHVnew (5),2);FCS (NCHVnew (6),2);FCS (NCHVnew (7),2)1;

depthl=[FCS (NCHVnew (1), 3) ;FCS (NCHVnew (2), 3) ; FCS (NCHVnew (3) , 3) ; FCS (NCHV
new(4),3) ; FCS (NCHVnew (5), 3) ; FCS (NCHVnew (6) , 3) ; FCS (NCHVnew (7) , 3) 1;

flange widthl=[FCS (NCHVnew (1), 4);FCS(NCHVnew(2),4);FCS(NCHVnew(3),4); ;F
CS (NCHVnew (4) ,4) ; FCS (NCHVnew (5) ,4) ; FCS (NCHVnew (6) ,4) ; FCS (NCHVnew (7) , 4)
17

web thicknessl=[FCS (NCHVnew (1),5);FCS (NCHVnew (2),5) ;FCS(NCHVnew(3),5);
FCS (NCHVnew (4),5) ; FCS (NCHVnew (5) ,5) ; FCS (NCHVnew (6) ,5) ; FCS (NCHVnew (7) , 5
)17

flange thicknessl=[FCS (NCHVnew (1), 6);FCS(NCHVnew(2),6);FCS (NCHVnew(3),
6) ; FCS (NCHVnew (4) ,6) ; FCS (NCHVnew (5) , 6) ; FCS (NCHVnew (6) , 6) ; FCS (NCHVnew (7
),6) 15

inertial=[FCS (NCHVnew (1), 9);FCS (NCHVnew(2),9) ;FCS (NCHVnew(3),9) ;FCS (NC
HVnew (4),9) ; FCS (NCHVnew (5) , 9) ; FCS (NCHVnew (6) , 9) ; FCS (NCHVnew (7) , 9) 1;

[D1,Al,Max1,Mal,Mbl,Mcl]=NLstiffness (areal,inertial,depthl,web thickne
ssl);

[Cl]=constraint (depthl,web thicknessl, flange widthl, flange thicknessl,
Max1l,Mal,Mbl,Mcl,D1,Al,inertial);

NEWfit=fitness (FCS (NCHVnew (1), 2),FCS(NCHVnew(2),2),FCS(NCHVnew (3),2),F
CS (NCHVnew (4) ,2) ,FCS (NCHVnew (5) ,2) , FCS (NCHVnew (6) ,2) , FCS (NCHVnew (7) , 2)
,ro,Cl);
if NEWfit < worstcost
HM (worst, :)=NCHV;
score (worst)=NEWfit;
end
[worstcost worst]=max (score) ;
[a b]=min (score);
xmin=HM (b, :) ;
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fmin=score (b) ;
cc(t)=fmin;

end

[x y]=min (score);

HMmin=HM/(y, :)

for g=1:NVAR
Z=strcmp (IbeamStr, HMmin (qg) ) ;
[r,c]l=find (Z2) ;
HMminNUM (g) =r;

end

areaz2=[FCS (HMminNUM (1), 2) ; FCS (HMminNUM(2) ,2) ; FCS (HMminNUM (3),2) ; FCS (HM
minNUM (4),2) ; FCS (HMminNUM (5),2) ; FCS (HMminNUM(6) , 2) ; FCS (HMminNUM (7),2) ]

’

depth2=[FCS (HMminNUM (1), 3) ; FCS (HMminNUM (2), 3) ; FCS (HMminNUM (3) , 3) ; FCS (H
MminNUM (4), 3) ; FCS (HMminNUM (5), 3) ; FCS (HMminNUM (6) , 3) ; FCS (HMminNUM (7) , 3)
17

flange width2=[FCS (HMminNUM (1), 4);FCS (HMminNUM(2) ,4);FCS (HMminNUM (3) , 4
) ; FCS (HMminNUM (4) ,4) ; FCS (HMminNUM (5) ,4) ; FCS (HMminNUM (6) ,4) ; FCS (HMminNU
M(7),4)]1;

web thickness2=[FCS (HMminNUM (1) ,5) ;FCS (HMminNUM(2),5) ; FCS (HMminNUM (3),
5) ; FCS (HMminNUM (4), 5) ; FCS (HMminNUM (5) , 5) ; FCS (HMminNUM (6) , 5) ; FCS (HMminN
UM (7),5)1;

flange thickness2=[FCS (HMminNUM (1) ,6) ;FCS (HMminNUM(2) ,6) ;FCS (HMminNUM (
3),6);FCS (HMminNUM (4), 6) ; FCS (HMminNUM (5), 6) ; FCS (HMminNUM (6), 6) ; FCS (HMm
inNUM(7),6)1;

inertia2=[FCS (HMminNUM (1), 9) ;FCS (HMminNUM(2),9) ; FCS (HMminNUM(3), 9) ; FCS
(HMminNUM (4), 9) ; FCS (HMminNUM (5) , 9) ; FCS (HMminNUM (6) , 9) ; FCS (HMminNUM (7),
9)1;

[D2,A2,Max2,Ma2,Mb2,Mc2]=NLstiffness (area2, inertia2, depth2,web thickne
ss2);

[C2]=constraint (depth2,web thickness2, flange width2, flange thickness2,
Max2,Ma2,Mb2,Mc2,D2,A2,inertia?2) ;

SCOREmin=score (y)

D2 (160)

plot(cc);

toc

end
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Appendix C - Nonlinear Stiffness MATLAB Code

function [Displacementi,Forces,TotalForces,StiffnessMatrix] =
StiffnessNONlin (Displacement,pe,area, inertia, depth, web)

nel=60; gnumber of elmenets

nnel=2; gnumber of nodes per element
ndof=3; $number of DOFs per node
edof=nnel*ndof; Snumber of DOFs per element
nnode=57; $total number of nodes in system

sdof=nnode*ndof;

% Member Coords

MC=[ O 0 0 36; 240 0 240 36; 480 0 480
36; 0 36 0 72; 240 36 240 72; 480 36

480 72; 0 72 0 108; 240 72 240 108; 480

72 480 108; 0 108 0 144; 240 108 240 144; 480
108 480 144;0 144 60 144; 60 144 120 144;120 144
180 144;180 144 240 144;240 144 300 144;300 144 360
144;360 144 420 144;420 144 480 144;0 144 0

180;240 144 240 180;480 144 480 180;0 180 0

216;240 180 240 216;480 180 480 216;0 216 0

252;240 216 240 252;480 216 480 252;0 252 0

288;240 252 240 288;480 252 480 288;0 288 60 288; 60

288 120 288;120 288 180 288;180 288 240 288;240 288
300 288;300 288 360 288;360 288 420 288;420 288 480

288;0 288 0 324;240 288 240 324;480 288 480 324;0
324 0 360;240 324 240 360,480 324 480 360;0 360

0 396;240 360 240 396,480 360 480 396;0 396 0
432;240 396 240 432;480 396 480 432;0 432 60 432;60

432 120 432;120 432 180 432;180 432 240 432;240 432
300 432;300 432 360 432;360 432 420 432; 420 432

480 43271;

% Member Nodal Connectivity

nodes=[55 1;56 2;57 3;1 4;2 5;3 6;4 7;5
8;6 9;7 10;8 14;9 18;10 11;11 12;12 13;13
14;14 15;15 16;16 17;17 18;10 19;14 20;18 21;19
22;20 23;21 24;22 25;23 26;24 27;25 28;26 32;27
36;28 29;29 30;30 31;31 32;32 33;33 34;34 35;35
36;28 37;32 38736 39;37 40;38 41;39 42;40 43;41
44;42 45;43 46;44 50;45 54;46 47;47 48;48 49;49
50;50 51;51 52;52 53;53 547;

E=30000;

A=[area(l) area(2) area(l) area(l) area(2) area(l) area(l) area(2)

area(l) area(l) area(2) area(l) area(7) area(7) area(7) areal(7)

area(7) area(7) area(7) area(7) area(3) area(4) area(3) area(3)

area (4) area(3) area(3) area(4) area(3) area(3) area(4) area(3)

area(7) area(7) area(7) area(7) area(7) area(7) area(7) area(7)

area (5) area(6) area(5) area(5) area(6) area(5) area(5) area(6)
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area (5) area(5) area(6) area(5) area(7) area(7) area(7) area(7)
area(7) area(7) area(7) area(7)];
I=[inertia(l) inertia(2) inertia(l) inertia(l) inertia(2) inertia(l)
inertia(l) inertia(2) inertia(l) inertia(l) inertia(2) inertia(l)
inertia(7) inertia(7) inertia(7) inertia(7) inertia(7) inertia(7)
inertia(7) inertia(7) inertia(3) inertia(4) inertia(3) inertia(3)
inertia(4) inertia(3) inertia(3) inertia(4) inertia(3) inertia(3)
inertia(4) inertia(3) inertia(7) inertia(7) inertia(7) inertia(7)
inertia(7) inertia(7) inertia(7) inertia(7) inertia(5) inertia(6)
inertia(5) inertia(5) inertia(6) inertia(5) inertia(5) inertia(6)
inertia(5) inertia(5) inertia(6) inertia(5) inertia(7) inertia(7)
inertia(7) inertia(7) inertia(7) inertia(7) inertia(7) inertia(7)];
d=[depth (1) depth(2) depth(l) depth(l) depth(2) depth(l) depth(1l)
depth(2) depth(l) depth(l) depth(2) depth(l) depth(7) depth(7)
depth(7) depth(7) depth(7) depth(7) depth(7) depth(7) depth(3)
depth(4) depth(3) depth(3) depth(4) depth(3) depth(3) depth(4)
depth (3) depth(3) depth(4) depth(3) depth(7) depth(7) depth(7)
depth(7) depth(7) depth(7) depth(7) depth(7) depth(5) depth(6)
depth (5) depth(5) depth(6) depth(5) depth(5) depth(6) depth(5)
depth (5) depth(6) depth(5) depth(7) depth(7) depth(7) depth(7)
depth(7) depth(7) depth(7) depth(7)1;
M=[pe (3,13) pe(6,16) pe(3,17) pe(6,20) pe(3,33) pe(6,36) pe(3,37)
e(6,40) pe(3,53) pe(6,56) pe(3,57) pe(6,60)];
N=[pe(4,:)];
Cl=1.83*10"-3;
C2=1.04*10"-4;
C3=6.38*10"-6;
tp=0.685;
dg=[depth (7)+61];
tf=1;
Kconl=(dg"-2.4)* (tp"-0.4) *(t£~-1.5);
Kcon2=(dg”"-2.4)* (tp"-0.4) *(t£~-1.5);
Kcon3=(dg”"-2.4)* (tp"-0.4) *(t£~-1.5);
Kcond=(dg"-2.4) * (tp"-0.4) *(t£~-1.5);
Kconb=(dg"-2.4) * (tp"-0.4) *(t£~-1.5);
Kconb6=(dg”"-2.4)* (tp"-0.4) *(t£~-1.5);
Thetal=Cl* (Kconl*M (1)) ~1+C2* (Kconl*M (1)) ~3+C3* (Kconl*M(1))"5;
Theta2=Cl* (Kcon2*M(2)) ~1+C2* (Kcon2*M (2)) ~3+C3* (Kcon2*M(2)) ~5;
Theta3=Cl* (Kcon2*M(3)) ~"1+C2* (Kcon2*M(3) ) "3+C3* (Kcon2*M(3))"5;
Theta4=Cl* (Kconl*M(4))~1+C2* (Kconl*M(4))"3+C3* (Kconl*M(4))"5;
Theta5=Cl* (Kcon3*M(5))"1+C2* (Kcon3*M(5) ) *"3+C3* (Kcon3*M(5))"5;
Theta6=Cl* (Kcond4*M(6)) ~"1+C2* (Kcond4*M(6)) "3+C3* (Kcond*M(6))"5;
Theta7=Cl* (Kcond4*M (7)) "1+C2* (Kcond*M (7)) "3+C3* (Kcond*M(7))"5;
Theta8=Cl* (Kcon3*M(8)) "1+C2* (Kcon3*M(8) ) "3+C3* (Kcon3*M(8))"5;
Theta9=Cl* (Kcon5*M(9) ) "1+C2* (Kcon5*M(9) ) "3+C3* (Kcon5*M(9) ) *5;
Thetal0=Cl* (Kcon6*M(10))"1+C2* (Kcon6*M (10) ) "3+C3* (Kcon6*M(10))"5;
Thetall=Cl* (Kcon6*M(11l))"1+C2* (Kcon6*M(11l))"3+C3* (Kcon6*M(11))"5;
Thetal2=Cl* (Kconb5*M(12))"1+C2* (Kconb5*M(12) ) "3+C3* (Kconb5*M(12))"5;
R1=M(1) /Thetal;
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R2=M(2) /Theta2;

R3=M(3) /Theta3;

R4=M(4) /Thetad;

R5=M(5) /Theta5;

R6=M(6) /Theta6;

R7=M(7) /Theta’;

R8=M(8) /Theta8;

R9=M(9) /Theta9;

R10 M(l ) /ThetalO;

R11 M( ) /Thetall;

R12=M(12) /Thetal2;

r=ones(60 2);
r(13,1)=1/(1+((3*E*I(7))/(R1*60)));
r(16,2)=1/(1+((3*E*I(7))/(R2%60)));
r(17,1)=1/(1+((3*E*I(7))/(R3%60)));
r(20,2)=1/(1+((3*E*I(7))/(R4%60)));
r(33,1)=1/(1+((3*E*I(7))/(R5%60)));
r(36,2)=1/(1+((3*E*I(7))/(R6%60)));
r(37,1)=1/(1+((3*E*I(7))/(R7*60)));
r(40,2)=1/(1+((3*E*I(7))/(R8%60)));
r(53,1)=1/(1+((3*E*I(7))/(R9%60)));
r(56,2)=1/(1+((3*E*I(7))/(R10*60)));
r(57,1)=1/(1+((3*E*I(7))/(R11*60)));
r(60,2)=1/(1+((3*E*I(7))/(R12*60)));

L=zeros (60,1);

o)

% Member 1

i=1;

rl(i)=r(i,1);

r2(i)=r(i,2);

N(i)=pe(4,1);

L(i) = sgrt ((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1));

cei(:,:,1)= Cei(rl(i),r2(i),L(1i));

Q
-
~
~
[
|

cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1)=si(:,:,1i)*cedi(:,:,1)+gi(:,:,1)*cgi(:,:,1);
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) ."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1l:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,J,1) = 1;

(

2
= GL(N(1),L(1));

2

(:

end
end

end
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K(:,:,i)=LocM(:,:,1) "*k(:,:,1)*LocM(:,:,1);
% Member 2
i=2;
rl(i)=r(i,1):;
r2(i)=r(i12);
N(i)=pe(4,1);
L(i) = sqgrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4));
si(:,:,1) = Si(E,A(i),L(1),I(1))>
cei(:,:,1)= Cei(rl(i),r2(i),L(i));
gi(:,:,1) = G1i(N(1),L(1))>

cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
K(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);

nd (2)=nodes (i, 2);

index=feeldof (nd, nnel, ndof)."';

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 7j;
LocM(g,j,1i) = 1;
end
end
end
K(:,:,1i)=LocM(:,:,1i)"*k(:,:,1)*LocM(:, :,1);
% Member 3
i=3;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1,2),MC(1,3),MC(1i,4));
si(:,:,1) = Si(E,A(i),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(1i),L(1));
gi(:,:,1) = Gi(N(1),L(1));

cgi(:,:,1)= Cgi(rl(i),r2(i),L(i));
ki(:,:,1)=si(:,:,1i)*cedi(:,:,1)+gi(:,:,1)*cgi(:,:,1);
k(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,j,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 4
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i=4;rl (i
r2(i)=r (i, 2)
N (i)=pe(4,1)

);

r(i,

)=r(i,1
L(i) = sqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(i,2))"2);

te(:,:,1) = Te(MC(i,1),MC(i,2),MC(i,3),MC(1i,4)):
si(:,:,1) Si(E,A(1),L(1),I(1));

cei(:,:,1)= Cei(rl(i),r2(1i),L(1));

gi(:,:,1) Gi(N(1),L(1));

cgi(:,:,1)= Cgi(rl(i),xr2(i),L(i));
ki(:,:,1i)=si(:,:,1i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);

nd (2)=nodes (i,2);

index=feeldof (nd, nnel,ndof) ."';

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1l:3*nnode;
for g = 1:6;
if index(g) == j;

LocM(g,3j,1i) = 1;
end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 5

i=5;

rl(i)=r(i,1);
r2 (i)=r(i,2);
N(i)=pe(4,1);

L(i) = sgrt((MC(i,3)-MC(i,1))"2 +(MC(1i,4)-MC(1i,2))"2);

te(:,:,1) = Te(MC(i,1),MC(1i,2),MC(1i,3),MC(i,4));
Si(:l:li) = Sl(EIA(l)IL(l)II(l));
cei(:,:,1)= Cei(rl(i),r2(1i),L(1));
gi(:,:,1) = GL(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1i)=si(:,:,i)*cei(:,:,i)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2) ;
index=feeldof (nd, nnel, ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;

for j = 1:3*nnode;

for g = 1:6;
if index(g) =

=j~
LocM(g,J,1)

=:|_;
end
end

end
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N(i)=pe(4,1i);

L(i) = sqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4));
si(:,:,1) = Si(E,A(i),L(i),I(1))

cei(:,:,1)= Cei(rl(i),r2(1i),L(1));

gi(:,:,1) Gi(N(i),L(1));

cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);

nd (2)=nodes (i, 2);

index=feeldof (nd, nnel, ndof)."';

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1:3*nnode;
for g = 1:6;
if index(g) == 7j;
LocM(g,J,1) = 1;
end
end
end
K(:,:,1i)=LocM(:, i) "*k(:,:,1)*LocM(:,:,1);
% Member 7
i=7;
rl(i)=r(l, 1) ’
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sgqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(1i,3),MC(i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1))

cei(:,:,1)= Cei(rl(i),r2(i),L(i));
gi(:,:,1) Gi(N(i),L(1))-
cgi(:,:,1i)= Cgi(rl(i),r2(i),L(i));
ki(:,:,1)=si(:,:,1i)*cedi(:,:,1)+gi(:,:,1i)*cgi(:,:,1);
k(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i,2);
index=feeldof (nd, nnel, ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,J,1) = 1;

end
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te(:,:,1) = Te(MC(i,1),MC(i,2),MC(1i,3),MC(1i,4));
si(:,:,1) = Si(E,A(1), L( ), I(1));

cei(:,:,1)= Cei(rl(i), r2( y,L(1));

gi(:,:,1) = GLi(N(1),L(1)

cgi(:,:,1)= Cgi(rl(i),rZ(i),L(i));
ki(:,:,1i)=si(:,:,1i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);

kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);

nd (2)=nodes (i,2);
index=feeldof (nd, nnel, ndof) .’

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,J,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 9
i=9;

rl(i)=r(i,1);
r2(l)=r(112);
N(i)=pe(4,1);
L(i) = sgrt((MC(i,3)-MC (i 1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2)

,MC(1,3),MC(i,4));
Si(:I:Ii) =Sl(EIA(l)IL(l) I(i))-
cei(:,:,1)= Cei(rl(i),r2(i),L(i));
gi(:,:,1) = GL(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(i));
(), )+gi(3::ri)*cgi(:r:ri);

ki(:,:,1i)=si(:,:,1)*cel
K(:,:,1)=te(:,:,1)"*ki(
nd(1l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) .'
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1l:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g, ], 1) =

:,:,i)*te(:lzli);

1;
end
end
end

K(:,:,i)=LocM(:,:,1)"*k(:,:,1i)*LocM(:,:,1);
% Member 10
i=10;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(1i, 1) MC(i,2),MC(i,3),MC(i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1));
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cei(:,:,1)= Cei(rl(i),r2(i),L(1));

gi(:,:,1) = Gi(N(1),L(1));

cgi(: ,-,l)= Cgl(rl( i),r2(i),L(1));

ki(:,.,l i(: i)*cei(:,:,1)+gi(:, :,1) *cgi(:,:,1);

kK(:,:,1) te( ,:,i)'*ki(:,:,i)*te(:,:,i);
nd(l)=nodes (i, 1) ;
nd (2)=nodes (i,2) ;

index=feeldof (nd, nnel, ndof) .'
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 7j;
LocM(g,j,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
$ Member 11
i=11;
rl (i)
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sgrt((MC(i,3)-MC(i,1))"2 +(MC(1,4)-MC(1i,2))"2);

=r(i,1);

q
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4));
Si(:I:Il) = Sl(EIA(l)IL(l)II(l));
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) = Gi(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1)=si(:,:,1i)*cedi(:,:,1)+gi(:,:,1i)*cgi(:,:,1);

k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) .’
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 3j;
LocM(g,],1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
$ Member 12

i=12;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sgrt((MC(i,3)-MC(1i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(i),L(i)):

)

= GL(N(1),L(1));

4
gi(:,:,1
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cgif(:,:,1)= Cgi(rl(i),r2(i),L(1));

ki(:,:,1i)=si(:,:,i)*cei(:,:,1i)+gi(:,:,1)*cgil(:,

kK(:,:,1)=te(:,:,1)"*ki(:,:,
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) .’

i)*te(:,:,1);

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1:3*nnode;
for g = 1:6;
if index(g) == 7j;
LocM(g,J,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 13
i=13;
rl(i)=r(i,1);
r2(l)=r(112);
N(i)=pe(4,1);
L(i) = sqgrt((MC(i,3)-MC (i 1))"2
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(i,3),MC
si(:,:,1) = Si(E,A(1),L(1),I(1));
= Cei(rl(i),r2(i),L(1));

gi(:,:,1
cgi(:,:,1)= Cgi(rl(i),r
ki(:,:,1i)=si(:,:,1)*cel
k(:,:,1)=te(:,:,1) "*ki(
nd (1l)=nodes (i, 1) ;
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) .'
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,J,1) = 1;

(1) ,L(1));

q

)

) (
cei(:,:,1) 2

) = Gi(N(i),L(i));

i 2

) (:

, i, 1) *te(:, 0, 1)

end
end
end
K(:,:,1)=LocM(:,
% Member 14

;1) "*k(:,:,1)*LocM(:, :,1);

i=14;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sgrt((MC(i,3)-MC(i,1))"2
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(i,3),MC
si(:,:,1) = Si(E,A(1),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(i),L(1)):
gi(:,:,1) = Gi(N(1),L(1i));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgil
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k(:,:,1)=te(:
nd (1) nodes( )
nd (2)=nodes (i
index= feeldof(nd nnel, ndof) .’

P1)Prki(:, 1) *te (e, ,1)

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;

LocM(g,J,1) = 1;
end
end

end
K(:,:,1i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 15

i=15;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqgrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1,2),MC(1,3),MC(1i,4)):;
si(:,:,1) Si(E,A(1),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) Gi(N(i),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1i)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i);
nd(l)=nodes (i, 1) ;
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) .’

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,],1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1i)*LocM(:,:,1);
$ Member 16
i=16;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)-MC(1i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) e(MC(i,1),MC(i,2),MC(1i,3),MC(1,4));
Si(:l:li) = Sl(EIA(l)IL(l) I(i));
cei(:,:,1)= Cei(rl(i),r2(1i),L(1));

Gi(N(i),L(1));
Cgi(rl(i),r2(i),L(1));

gi(:,:,1)
cgi(:,:,1)

ki(:,:,1)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
K(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1) ;
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nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 7j;
LocM(g,J,1) = 1;
end
end
end
(:,:,1)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 17
1i=17;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sgqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) Gi(N(i1),L(1))-
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
ki(:,:,1)=si(:,:,1i)*cedi(:,:,1)+gi(:,:,1i)*cgi(:,:,1);
k(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel,ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 3j;
LocM(g,J,1) = 1;

=

end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 18

i=18;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1,2),MC(1,3),MC(i,4));
si(:,:,1) = Si(E,A(i),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(1i),L(1));
gi(:,:,1) = Gi(N(1),L(1i));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
ki(:,:,i)=si(:,:,1i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
k(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel,ndof)."';
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LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,J,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 19
i=19;
rl(i)=r(i,1);
r2(i)=r(i,2):;
N(i)=pe(4,1);
L(i) = sqgrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1i,2),MC(1i,3),MC(i,4));
Si(:I:Ii) = Sl(EIA(l)IL(l)II(l));
cei(:,:,1)= Cei(xrl(i),r2(i),L(1));
gi(:,:,1) = Gi(N(i),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
ki(:,:,1i)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd (1l)=nodes (i, 1) ;
nd (2)=nodes (i, 2) ;
index=feeldof (nd, nnel, ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,J,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1i)*LocM(:,:,1);
% Member 20
1=20;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqgqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1i,2),MC(1i,3),MC(i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1))
cei(:,:,1)= Cei(rl(i),r2(i),L (1)
gi(:,:,1) = GL(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(i));
ki(:,:,1)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(1l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;

’
) .
4
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for g = 1:6;
if index(g) == 7j;
LocM(g,J,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 21
i=21;
rl(i)=r(irl);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(41,3),MC(1i,4)):;
si(:,:,1) = Si(E,A(1),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) = Gi(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1)=si(:,:,1i)*cedi(:,:,1)+gi(:,:,1i)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) ."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 7j;
LocM(g,],1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
$ Member 22
i=22;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqgrt((MC(i,3)-MC(1i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1,2),MC(1,3),MC(i,4));
Si(:l:li) = Sl(EIA(l)IL(l)II(l));
cei(:,:,1)= Cei(rl(i),r2(1i),L(1));
gi(:,:,1) = Gi(N(1i),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1)=si(:,:,1i)*cedi(:,:,1)+gi(:,:,1i)*cgi(:,:,1);
k(:,:,i)=te(:,:,1) "*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1) ;
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof)."';

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
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LocM(g,j,1i) = 1;
end
end
end

(:,:,1)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 23

1=23;

rl(i)=r(i,1);
r2(i)=r(i,2):;
N(i)=pe(4,1);
L(i) = sgrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) = Gi(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1i)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
k(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd (1l)=nodes (i, 1) ;
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof)."';

=

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;

LocM(g,J,1) = 1;
end
end
end

(:,:,1)=LocM(:, :,1)"*k(:,:,1)*LocM(:, :,1);
% Member 24

i=24;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) = Gi(N(1i),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1i)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
k(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(1l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel,ndof)."';

=

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1l:3*nnode;
for g = 1:6;
if index(g) == j;

LocM(g,J,1) = 1;

end
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end

end
K(:,:,1i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 25

i=25;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1,2),MC(1,3),MC(1i,4)):;
si(:,:,1) = Si(E,A(1),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(1i),L(1));
gi(:,:,1) = GL(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1i)=si(:,:,1i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2) ;
index=feeldof (nd, nnel, ndof) ."';

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1l:3*nnode;
for g = 1:6;
if index(g) == j;

LocM(g,]j,1i) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 26
1i=26;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqgrt((MC(i,3)-MC(1i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(i,4));
Si(:l:li) = Sl(EIA(l)IL(l)II(l));
cei(:,:,1)= Cei(rl(i),r2(1i),L(1));
gi(:,:,1) Gi(N(i),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1i)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2) ;
index=feeldof (nd, nnel,ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) ==
LocM (g, j,1)

end
end

end
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K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 27

1=27;
rl(i)=r(i,1);
r2(i)=r (i, 2)

N(i)=pe(4,1);

L(i) = sqrt(( C(i,3)-MC(i,1))"2 +(MC(i,4)—MC(i,2))“2);
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4));
si(:,:,1) = Si(E,A(') L(i),I(i )),
cei(:,:,1)= Cei(rl(i),r2(i),L(i));
gi(:,:,1) = GL(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
ki(:,:,1) (:p:,i)+gi(:,:,1) *cgi(:,:,1);

=si(:,:,1)*cel
k(:,:,1)=te(:,:,1) "*ki(
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) .'
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 7j;
LocM(g,j,1i) = 1;
end

t, 0, 1) *te (s, 0, 1)

K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);

qrt((MC(i,3)—MC(i,l))A2 +(MC(1,4)-MC(i,2))"2);
) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4));
) = Si(E,A(1),L(1),I(1));
i)= Cei(rl(i),r2(i),L(1));
) = Gi(N(i),L(i));
i)= Cgi(rl(i),r2
ki(:,:,1i)=si(:,:,1)*ceil(:,
k(:,:,1)=te(:,:,1) "*ki(
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) .'
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,j,1) = 1;
end
end
end

K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 29

(1) ,L(1));

,1)+gi(:,:,1) *egi(:,0,1) 7
1) *te (s, 0, 1)
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L(i) = sgqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(i,4));
si(:,:,1i) = Si(E,A(1),L(1),I(1));

cei(:,:,1)= Cei(rl(i),r2(i),L(1)):
gi(:,:,1) Gi(N(i),L(1));
2
(:

cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1i)=si(:,:,1i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i);
nd(l)=nodes (i, 1);

nd (2)=nodes (i,2);

index=feeldof (nd, nnel, ndof) .’

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1l:3*nnode;
for g = 1:6;
if index(g) == j;

LocM(g,j,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1i)"*k(:,:,1)*LocM(:,:,1);
% Member 30

1=30;
rl(i)=r(i,1);
r2(i)=r(i, 2);
N(i)=pe(4,1);
L(i) = sqrt ((MC(i,3)-MC(i,1))"2 +(MC(i,4)—MC(i,2))A2);
te(:,:,1) e(MC(i,1),MC(i,2),MC(i,3),MC(i,4));

si(:,:,1) = Si(E,A(1),L(1),I(1 )),
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) Gi(N(i),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
ki(:,:,1i)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i);
nd(1l)=nodes (i, 1);
nd (2)=nodes (i, 2) ;
index=feeldof (nd, nnel, ndof) .'
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) ==
LocM (g, J,1)

j;
= 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 31

i=31;
rl(i)=r(i,1);
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r2(i)=r(i,2);

N(i)=pe(4,1)

L(i) = sgqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(41,3),MC(1i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1));

cei(:,:,1)= Cei(rl(i),r2(i),L(i));

gi(:,:,1) = Gi(N(1),L(1));

cgi(:,:,1)= Cgi(rl(i),r2(1),L(i));
ki(:,:,1)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) .'
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 7j;
LocM(g,],1) = 1;
end

K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);

q
) = Te(MC(i,1),MC(i,2),MC(i,3),MC(1i,4));
) = Si(E,A(i),L(1),I(1));

t,1)= Cei(rl(i),r2(1),L(1));
gi(:,:,1) Gi(N(i),L(i));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1)=si(:,:,1i)*cedi(:,:,1)+gi(:,:,1i)*cgi(:,:,1);
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i);
nd(l)=nodes (i, 1);
nd (2)=nodes (i,2);
index=feeldof (nd, nnel, ndof) .’

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;

LocM(g,]j,i) = 1;
end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 33
1=33;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);

’
’
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L(i) = sqgrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1,2),MC(1,3),MC(1i,4)):;
si(:,:,1) = Si(E,A(1),L(i),I(1))>
cei(:,:,1)= Cei(rl(i),r2(i),L(1)):
gi(:,:,1) Gi(N(i),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
ki(:,:,1i)=si(:,:,1i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
K(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 7j;
LocM(g,J,1) = 1;

end
end
end

(:,:,1)=LocM(:, :,1)"*k(:,:,1)*LocM(:, :,1);
% Member 34

i=34;

rl(i)=r(i,1);
r2(l)=r(112);
N(i)=pe(4,1);
L(i) = sgqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(i,4));
si(:,:,1) Si(E,A(1),L(1),I(1));
cei(:,:,1)= Cei(xrl(i),r2(i),L(1));
gi(:,:,1) = G1i(N(1),L(1))>
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
ki(:,:,1i)=si(:,:,i)*cei(:,:,i)+gi(:,:,1)*cgi(:,:,1);
k(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(1l)=nodes (i, 1);
nd (2)=nodes (i,2);
index=feeldof (nd, nnel,ndof) ."';

=

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 7j;
LocM(g,3j,i) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 35
i=35;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4/l) ;
L(i) = sqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1i,2),MC(1i,3),MC(i,4)):
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si(:,:,1) = Si(E,A(1),L(1),I(1));

cei(:,:,1)= Cei(rl(i),r2(i),L(1i));

gi(:,:,1) = GL(N(1),L(1));

cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));

ki(:,:,1)=si(:,:,1)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
(:z,:,1)*te(:,:,1);

i
kK(:,:,1)=te(:,:,1)"*ki
(
(

index=feeldof (nd, nnel,ndof) ."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,J,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 36
i=36;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqgrt((MC(i,3)-MC(1i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1i,2),MC(1i,3),MC(i,4));
Si(:I:Ii) = Sl(EIA(l)IL(l)II(l));
cei(:,:,1)= Cei(rl(i),xr2(i),L(1)):
gi(:,:,1) = Gi(N(i),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1i)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,],1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1i)*LocM(:,:,1);
% Member 37
i=37;
rl(i)=r(i,1);

N(i)=pe(4,1);
L(i) = sgrt((MC(i,3)-MC(1i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4));
Si(:l:li) = Sl(EIA(l)IL(l)II(l));
cei(:,:,i)= Cei(rl(i),r2(i),L(i));

125

www.manharaa.com



K(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd,nnel, ndof) .’
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1:3*nnode;
for g = 1:6;
if index(g) == 7j;
LocM(g,3j,1i) = 1;
end
end
end
(:,:,1)=LocM(:, :,1)"*k(:,:,1)*LocM(:, :,1);
% Member 38
1=38;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
= s

=

L(1) grt ((MC(1i,3)-MC(1i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1));

cei(:,:,1)= Cei(rl(i),r2(i),L(1));

gi(:,:,1) = Gi(N(1),L(1));

cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));

ki(:,:,1) (s, i) +gi(:,:,1)*cgi(:,:,1)

=si(:,:,1)*cei
k(:,:,1)=te(:,:,1) "*ki(
nd(l)=nodes (i, 1);
nd (2)=nodes (i,2);
index=feeldof (nd, nnel, ndof) .'

:,:,i)*te(:,:,i);

LocM(:,:,1) = zeros (6, (3*nnode)) ;

for j = 1:3*nnode;

for g = 1:6;
if index(g) == 3j;
LocM(g,3j,1i) = 1;
end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 39

1=39;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sgqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1,2),MC(1,3),MC(1i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) = G1L(N(1),L(1))>
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
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ki(:r:rl) Sl( yioi)*cei (s, 1) +gi(:, 0, 1) *cgi(:,:,1)
k(:,:,1)=te(:,: ')'*kl( piei)*te (s, 1,1)

nd (1) nodes(

nd (2)=nodes (i

index= feeldof(nd nnel, ndof) .’

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;

LocM(g,3j,1i) = 1;
end
end

end
K(:,:,1i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 40

1=40;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)—MC(i,l))A2 +(MC(1,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1,2),MC(1,3),MC(1i,4)):;
si(:,:,1) = Si(E,A(1),L(1),I(1 )),
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) Gi(N(i),L(1));
2
(:

cgi(:,:,1)= Cgi(rl(i),r2(i),L(i));
ki(:,:,1i)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i);

nd (1l)=nodes (i, 1) ;

nd (2)=nodes (i, 2) ;

index=feeldof (nd,nnel, ndof) .’

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;

if index(g) == j;
LocM(g,j,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1i)*LocM(:,:,1);
% Member 41
i=41;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(i,4)):;
si(:,:,1) Si(E,A(i),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(i),L(1i));
gi(:,:,1) Gi(N(i),L(1i));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(i));
ki(:,:,1)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i);
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nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) .'
LocM(:,:,1) = zeros (6, (3*nnode)) ;

for j = 1:3*nnode;

for g = 1:6;
if index(g) == 3j;
LocM(g,J,1) = 1;
end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 42

1=42;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqgrt((MC(i,3)-MC(1i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4));
Si(:I:Ii) = Sl(EIA(l)IL(l)II(l));
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) = Gi(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1)=si(:,:,1i)*cedi(:,:,1)+gi(:,:,1i)*cgi(:,:,1);
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) .’

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 3j;
LocM(g,],1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 43
i=43;
rl(i)=r(i,1);
r2(i)=r(i,2);

(
N(i)=pe(4,1);
= S

L(1) grt ((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1));

cei(:,:,1)= Cei(rl(i),r2(i),L(i)):

gi(:,:,1) = Gi(N(1),L(1i));

cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
ki(:,:,i)=si(:,:,1i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);

nd (1)=nodes (1

i
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i);
(1,1);
(i,2);

nd (2)=nodes
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index=feeldof (nd, nnel, ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 3j;
LocM(g,J,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 44
i=44;
rl(i)=r(i,1);
r2(i)=r(i,2):;
N(i)=pe(4,1);
L(i) = sqgqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) = Gi(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
ki(:,:,1i)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
k(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd (1l)=nodes (i, 1) ;
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel,ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 7j;
LocM(g,J,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 45
i=45;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(i,4));
si(:,:,1) = Si(E,A(i),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) = Gi(N(1i),L(i));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(i));
ki(:,:,1)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
k(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(1l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel,ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
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for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,j,1) = 1;
end
end
end
(:,:,1)=LocM(:, :,1)"*k(:,:,1)*LocM(:, :,1);
% Member 46
i=46;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1,2),MC(1,3),MC(1i,4)):;
Si(:I:Ii) = Sl(EIA(l)IL(l)II(l));
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) = Gi(N(i),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1i)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2) ;
index=feeldof (nd, nnel, ndof) ."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,],1) = 1;

=

end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1i)*LocM(:,:,1);
% Member 47

i=47;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqgrt((MC(i,3)-MC(1i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(i,3),MC(1,4));
Si(:l:li) = Sl(EIA(l)IL(l)II(l));
cei(:,:,1)= Cei(rl(i),r2(1i),L(1));
gi(:,:,1) = GL(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;

for j = 1:3*nnode;

for g = 1:6;
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if index(g) == 7j;
LocM(g,J,1) = 1;

end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% mber 48

i=48

rl(i)=r(i,1);
r2(1) r(i,2);

N(i)=pe(4,1)

L(i) = sqrt((MC(i,3)—MC(i,l))A2 +(MC(1,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1,2),MC(1,3),MC(1,4)):;
si(:,:,1) = Si(E,A(1),L(1),I(1));
cel( ;i,1)= Cei(rl(i),r2(1),L(1));

( Il) =

Cgl( I-Il): Cgl(rl(l),r (l)IL(l));
ki(:,:,1)=si(:,:,1)*cei t,i)+gi(:, 1) *cgi(:, 0,1) 7
k(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);

nd (2)=nodes (i, 2);

index=feeldof (nd, nnel, ndof) .'

(1),
2
Gi(N(i),L(1));
2
()

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == 7j;
LocM(g,3j,1i) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 49
i=49;
rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sgqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)—MC(i,2))A2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4));
si(:,:,1) = Si(E,A(1),L(1),I(1 )),
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(

), L(1)) s
,1)+gi(:,:,1) *cgi(:,1,1) 5
t,i, i) *te (e, 0,1)

cgi(:,:,1)= Cgi(rl(i),r2(1i
ki(:,:,1i)=si(:,:,1)*cel
k(:,:,1)=te(:,:,1) "*ki(
nd(l)=nodes (i, 1);

nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof)."';

(

2
t,0,1) = GL(N(L),L(1));

2

(:,

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1l:3*nnode;
for g = 1:6;
if index(g) == j;

LocM(g,J,1) = 1;
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end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 50

1=50;

rl(i)=r(i,1);
r2(i)=r(i,2):;
N(i)=pe(4,1);
L(i) = sqgqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1,2),MC(1,3),MC(1i,4)):;
si(:,:,1) = Si(E,A(1),L(1),I(1));
cei(:,:,1i)= Cei(rl(i),r2(i),L(i));
gi(:,:,1) = Gi(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
ki(:,:,1i)=si(:,:,1i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd (1l)=nodes (i, 1) ;
nd (2)=nodes (i, 2) ;
index=feeldof (nd, nnel, ndof)."';

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1l:3*nnode;
for g = 1:6;
if index(g) == j;

LocM(g,J,1) = 1;
end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 51

i=51;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqgqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(1i,4));
Si(:l:li) = Sl(EIA(l)IL(l)II(l));
cei(:,:,1)= Cei(rl(i),r2(i),L(1));
gi(:,:,1) Gi(N(i),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
ki(:,:,1i)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(1l)=nodes (i, 1);
nd (2)=nodes (i, 2) ;
index=feeldof (nd, nnel, ndof)."';

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1l:3*nnode;
for g = 1:6;

if index(g) == 3j;
LocM(g,J,1) = 1;

end

end
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end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% Member 52

i=52;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);

L(i) = sqgqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);

te(:,:,1) = Te(MC(1i,1),MC(i,2),MC(41,3),MC(1i,4)):;
si(:,:,1) = Si(E,A(1),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(1i),L(1i));
gi(:,:,1) = Gi(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),xr2(i),L(i));
ki(:,:,1)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) ."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;

for j = 1:3*nnode;

for g = 1:6;
if index(g) == 7j;
LocM(g,],1) = 1;
end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 53

i=53;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);

L(i) = sgrt((MC(i,3)-MC(i,1))"2 +(MC(1i,4)-MC(1i,2))"2);

te(:,:,1) = Te(MC(i,1),MC(1,2),MC(1,3),MC(1i,4));
Si(:l:li) = Sl(EIA(l)IL(l)II(l));
cei(:,:,1)= Cei(rl(i),r2(i),L(i));
gi(:,:,1) = G1i(N(1),L(1))
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1)=si(:,:,i)*cei(:,:,1)+gi(:,:,1i)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,j,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
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% Member 54

i=54;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqgrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1,2),MC(1,3),MC(1i,4)):;
si(:,:,1) = Si(E,A(i),L(i),I(1))>
cei(:,:,1)= Cei(rl(i),r2(i),L(1)):
gi(:,:,1) = Gi(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
ki(:,:,1i)=si(:,:,1i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
K(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof)."';

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,J,1) = 1;
end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 55

i=55;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(1,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(i,4));
si(:,:,1) = Si(E,A(i),L(1),I(1));
cei(:,:,1)= Cei(rl(i),r2(i),L (1))
gi(:,:,1) = Gi(N(1i),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
ki(:,:,1i)=si(:,:,i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
k(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(1l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;

for j = 1:3*nnode;

for g = 1:6;
if index(g) == j;
LocM(g,j,1) = 1;
end
end

end
(:,:,1)=LocM(:, :,1)"*k(:,:,1)*LocM(:, :,1);
% Member 56
i=56;

=
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rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1i);
L(i) = sqgrt((MC(i,3)-MC(i,1))"2 +(MC(i,4)-MC(i,2))"2);

te(:,:,1) = Te(MC(i,1),MC(i,2),MC(i,3),MC(1i,4)):
si(:,:,1) = Si(E,A(1),L(1),I(1))>
cei(:,:,1)= Cei(rl(i),r2(1i),L(1));
gi(:,:,1) Gi(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),xr2(i),L(i));
ki(:,:,1i)=si(:,:,1i)*cei(:,:,1)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i,2);
index=feeldof (nd, nnel,ndof) ."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,3j,1i) = 1;

end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
$ Member 57

i=57;

rl(i)=r(i,1);
r2(i)=r(i,2);
N(i)=pe(4,1);
L(i) = sqgrt((MC(i,3)-MC(1i,1))"2 +(MC(i,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(1i,2),MC(1i,3),MC(i,4));
Si(:l:li) = Sl(EIA(l)IL(l)II(l));
cei(:,:,1)= Cei(rl(i),r2(1i),L(1));
gi(:,:,1) = GL(N(1),L(1));
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1));
ki(:,:,1i)=si(:,:,i)*cei(:,:,i)+gi(:,:,1)*cgi(:,:,1);
kK(:,:,1)=te(:,:,1)"*ki(:,:,1)*te(:,:,1);
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2) ;
index=feeldof (nd, nnel, ndof)."';
LocM(:,:,1) = zeros (6, (3*nnode)) ;

for j = 1:3*nnode;

for g = 1:6;
if index(g) =

=j~
LocM(g,J,1)

=:|_;
end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 58

i=58;

rl(i)=r(i,1);
r2(i)=r(i,2);
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N(i)=pe(4,1i);
L(i) = sqrt((MC(i,3)—MC(i,l))A2 +(MC(1,4)-MC(i,2))"2);
te(:,:,i) = Te(MC(i,1),MC(i,2),MC(i,3),MC(i,4));
si(:,:,1) = Si(E,A(i),L(1),I(4 )),
cei(:,:,1)= Cei(rl(i),r2(i),L(i));
gi(:,:,1) = G1L(N(1),L(1))
cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));
(:p:,i)+gi(:,:,1) *cgi(:,:,1);

ki(:,:,1i)=si(:,:,1)*cel
k(:,:,i)=te(:,:,1) "*ki(
nd(l)=nodes (i, 1);
nd (2)=nodes (i, 2);
index=feeldof (nd, nnel, ndof) .’

:,:,i)*te(:,:,i);

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1:3*nnode;
for g = 1:6;
if index(g) == j;

LocM(g,3j,1i) = 1;
end
end

end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);
% Member 59

i=59;

rl(i)=r(i,1);
r2(i)=r(i,2):;
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)—MC(i,l))“2 +(MC(1,4)-MC(i,2))"2);
te(:,:,1) = Te(MC(i,1),MC(i,2),MC(4i,3),MC(i,4));
si(:,:,1) Si(E,A(i),L(1),I(i )),
cei(:,:,1)= Cei(rl(i),r2(i),L(i));
gi(:,:,1) Gi(N(i),L(i));
2
(:

cgi(:,:,1)= Cgi(rl(i),r2(i),L(i));
ki(:,:,1)=si(:,:,1i)*cedi(:,:,1)+gi(:,:,1i)*cgi(:,:,1);
k(:,:,i)=te(:,:,i)'*ki(:,:,i)*te(:,:,i);
nd(l)=nodes (i, 1);

nd (2)=nodes (i,2);

index=feeldof (nd, nnel, ndof) .'

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for j = 1:3*nnode;
for g = 1:6;
if index(g) == j;
LocM(g,3j,i) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:, :,1);
% mber 60
i=60
rl(i)=r(i,1);
r2(i)=r (i, 2),
N(i)=pe(4,1);
L(i) = sqrt((MC(i,3)—MC(i,1))A2 +(MC(1,4)-MC(i,2))"2);
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te( ’ rl) = Te(MC(lrl)r ( ),MC(1,3),MC(1,4)),’
si(:,:,1) = Si(E,A(1), L(l) (l))

cei(:,:,1i)= Cei(rl(i),r2(i),L(1i));

gi(:,:,1) = Gi(N(i),L(i)),

cgi(:,:,1)= Cgi(rl(i),r2(i),L(1i));

ki(:, ,1) (sp:,i)+gi(:,s,1)*cgi(z,:,1) 5

=si(:,:,1)*ceil
k(:,:,1)=te(:,:,1) "*ki(
nd (1l)=nodes (i, 1) ;
nd (2)=nodes (i, 2) ;
index=feeldof (nd, nnel, ndof) .’

:I:Ii)*te(:l:li);

LocM(:,:,1) = zeros (6, (3*nnode)) ;
for 7 = 1l:3*nnode;
for g = 1:6;
if index(g) == j;

LocM(g,j,1) = 1;
end
end
end
K(:,:,i)=LocM(:,:,1)"*k(:,:,1)*LocM(:,:,1);

StiffnessMatrix=K(:,:,1)+

163:171,163:171
163:171,1:162);
1:162,163:171);
1:162,1:162);

ch StlffnessMatrl
Kcu=StiffnessMatri
Kuc=StiffnessMatrix
Kuu=StiffnessMatrix

K(:,:, t, 0, 3)+HK (2, 1, 4) t,:,5)+K(:,:,0)+
K(:,:,7)+K( ;8)+K (2, :,9)+K(:, :,10)+K(:, :,11)+K(:, :,12)+K(:, :,13)+K(:
, 0, 14) +K( 5)+K(:, :,16)+K(:, :,17)+K(:, :,18)+K(:,:,19)+K(:,:,20)+K(:
2, 2L) K (2, 2, 22) 4K (2, 2, 23)+K (2, 1, 24)+K (2, :,25)+K (:, :,206)+K (:,:,27)+K (:
, 2, 28)+K (s, :,29)+K (s, :,30)+K(:, :,31)+K(:, :,32)+K(:,:,33)+K(:,:,34)+K(:
, ,35)+K(:,:, 6)+K(:,:,37)+K(:,:,38)+K(:,:,39)+K(:,:,40)+K(:,:,41)+K(:
2, A2)+K (2, 2, 43)+K (2, 2, 44)+K (2, :,45)+K (:, 1, 40)+K (:, :,47)+K (:, :,48)+K (:
, ,49)+K(.,., 0)+K(:, :,51)+K(:,:,52)+K(:, :,53)+K(:,:,54)+K(:,:,55)+K(:
,56)+K (: 7)+K(:,:,58)+K(:,:,59)+K(:,:,60);
x )
X

P

ff (zeros(sdof 1));

(28 (1/10)
£(82)=(1/10)*
£(136)=(1/10)

Pfef=zeros (6, 60) ;
M11=(((1/10)*0.22*6072)/12)*(3*r(13,1)*(2-r(13,2))/ (4-
r(13,1)*r(13,2)));

M12=(((1/10)*0.22%60%2)/12)* (3*r(13,2)*(2-r(13,1))/ (4-
r(13,1)*r(13,2)));
M21=(((1/10)*0.22*6072)/12)*(3*r(16,1)*(2-r(16,2))/ (4-
r(le,1)*r(16,2)));

M22=(((1/10)*0.22*6072)/12)*(3*r (16,2)*(2-r(16,1))/ (4-
r(le,1)*r(l6,2)));
M31=(((1/10)*0.22*6072)/12)*(3*r(17,1)*(2-r(17,2))/ (4-
r(l7,1)*r(17,2)));
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M32=
r(1l7,1)
M41l=
r(20,1)
M42=
r(20,1)
M51=
r(33,1)
M52=
r(33,1)
M61=
r(36,1)
M62=

((1/10)*0.22*%6072)/12) *
*r(17,2)));
(((1/10)*0.22*6072)/12)*
*r(20,2)));
((1/10)*0.22%607%2)/12) *
*r(20,2)));
((1/10)*0.22*%60%2)/12) *
*r(33,2)));
(((1/10)*0.22*6072)/12)*
*r(33,2)));
((1/10)*0.22*%60%2)/12) *
*r(36,2)));
(((1/10)*0.22*6072)/12)*
r(36,1)*r

(36,2)));

(3*r(17,2)

(3*r

(3*r

(3*r

(20,1)~*
(3*r (20,2)*
(3*r(33,1) *
(33,2)*
(3*r(36,1) *

(36,2)*

*(2-x(17,1))/ (4=

(2-r(20,2))/ (4~
(2-r(20,1))/ (4-
(2-r(33,2))/ (4-
(2-r(33,1))/ (4~
(2-r(36,2))/ (4~

(2-r(36,1))/ (4=

M71=(((1/10)*0.22*%6072)/12)* (3*r(37,1)* (2-r(37,2))/ (4-
r(37,1)*r(37,2)));
M72=(((1/10)*0.22%6072) /12)* (3*r(37,2)* (2-r (37,1))/ (4-
r(37,1)*r(37,2)));
M81=(((1/10)*0.22*%6072)/12)* (3*r (40,1)* (2-r(40,2))/ (4-
r(40,1)*r(40,2)));
M82=(((1/10)*0.22*%6072) /12)* (3*r (40,2)* (2-r (40,1))/ (4-
r(40,1)*r(40,2)));
M91=(((1/10)*0.17%6072)/12)* (3*r (53,1)*(2-r(53,2))/ (4-
r(53,1)*r(53,2)));
M92=(((1/10)*0.17%6072)/12)* (3*r(53,2)* (2-r (53,1))/ (4-
r(53,1)*r(53,2)));

M101=(((1/10)*0.17*%6072)/12)* (3*r(56,1)*(2-r(56,2))/ (4~
r(56,1)*r(56,2)));
M102=(((1/10)*0.17*%6072)/12) * (3*r (56,2)* (2-r(56,1))/ (4-
r(56,1)*r(56,2)));
M111=(((1/10)*0.17*%6072)/12)*(3*r (57,1)* (2-r(57,2))/ (4-
r(57,1)*r(57,2)));
M112=(((1/10)*0.17*%60%2)/12)* (3*r (57,2)* (2-r(57,1))/ (4-
r(57,1)*r(57,2)));
M121=(((1/10)*0.17*%6072)/12)* (3*r (60,1)* (2-r(60,2))/ (4-
r(60,1)*r(60,2)));
M122=(((1/10)*0.17*%6072)/12)* (3*r (60,2)* (2-r(60,1))/ (4-
r(60,1)*r(60,2)));

V11=(((1/10)*0.22%60)/2)+ (M11+M12)/60;
V12=(((1/10)*0.22%60)/2)+- (M11+M12) /60;
V21=(((1/10)*0.22%60) /2)+ (M21+M22) /60;
V22=(((1/10)*0.22*%60) /2)+- (M21+M22) /60;
V31=(((1/10)*0.22*%60)/2)+ (M31+M32) /60;
V32=(((1/10)*0.22%60) /2) +- (M31+M32) /60;
V41l=(((1/10)*0.22%60)/2)+ (M41+M42) /60;
V42=(((1/10)*0.22*%60) /2) +- (M41+M42) /60;
V51=(((1/10)*0.22*%60)/2)+ (M51+M52) /60;
V52=(((1/10)*0.22*%60) /2) +- (M51+M52) /60;
V61=(((1/10)*0.22%60)/2)+ (M61+M62)/60;
V62=(((1/10)*0.22%60) /2)+- (M61+M62) /60;
V71=(((1/10)*0.22*%60)/2) + (M71+M72) /60;
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V72=(((1/10)*0.22*%60) /2)+- (M71+M72) /60;
V81l=(((1/10)*0.22*60)/2)+(M81+M82) /60;
V82=(((1/10)*0 22*60)/2)+ (M81+M82) /60;
VO1=(((1/10)*0.17*60)/2)+ (MI1+M92) /60;
V92=(((1/10)*0.17*60) /2)+-(M91+M92) /60;
V101=(((1/10)* .17*60)/2)+ M101+M102)/60;
V102=(((1/10)*0.17*60)/2)+-(M101+M102) /60;
V111=(((1/10)*0.17*%60)/2)+(M111+M112)/60;
V112=(((1/10)*0.17*60)/2)+-(M111+M112)/60;
V121=(((1/10)*0.17*%60)/2)+(M121+M122)/60;
V122=(((1/10)*0.17*60) /2)+-(M121+M122) /60;
Mw22=(((1/10)*0.22*60"2) /12
Mwl7=(((1/10)*0.17*60"2) /12
Vw22=(((1/10)*0.22*%60)/2) ;
Vwl7=(((1/10)*0.17*%60)/2);

w 22=[0;Vw22;Mw22;0;Vw22;-Mw22];
w 17=[0;Vwl7;Mwl7;0;Vwl7;-Mwl7];

NF1l=[0;V11;M11;0;V12;
NE2=[0;V21;M21;0;V22;
NE3=[0;V31;M31;0;V32;
NF4=[0;V41;M41;0;V42;
NE5=[0;V51;M51;0;V52;
NEF6=[0;V61;M61;0;V62;
NE7=[0;V71;M71;0;V72;
NE8=[0,;V81;M81;0;V82;
NEFE9=[0;V91;M91;0;V92;

-M127;
-M2217;
-M3271;
-M42];
-M521];
-M6217;
-M721;
-M8217;
-M921];

NF10=[0;V101;M101;0;V102;-M102];
NFll=[0;V111;M111;0;V112;-M112];
NEF12=[0,;V121;M121;0;V122;-M122];

Pfef (:,13)=NF1;
Pfef (:,14)=w_22;
Pfef (:, )=w 22;
Pfef (:,16)=NF2
Pfef (:, )=NF3
Pfef (:,18)=w_22;
Pfef (:,19)=w_22;
Pfef (:,20)=NF4;
Pfef (:,33)=NF5;
Pfef (:,34)=w_22;
Pfef (:,35)=w_22;
Pfef (:,36)=NF6;
Pfef (:,37)=NF7;
Pfef (:,38)=w 22;
Pfef (:,39)=w_ 22-
Pfef (:, )=NF8
Pfef (:,53)=NF9;
Pfef (:,54)=w 17;
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Pfef (:,55)=w_17;
Pfef (:,56)=NF10;
Pfef (:,57)=NF11;
Pfef (:,58)=w_17;
Pfef (:,59)=w_17;
Pfef (:,60)=NF12;

for i = 1:60

pf=transpose(te(:,:,1)) *Pfef (:

QQ=transpose (LocM(:, :,1)) *pf;
pfi(:,i)=QQ;
end

Pf=sum(pfi, 2);

Pu=ff-Pf;

Uc=ff(163:171);

Uu=Kuu”-1* (Pu(l:162)-Kuc*Uc) ;
Dl=(zeros(171,1));
D1(163:171,1)=Uc;
D1(1:162,1)=Uu;

Displace=D1l;
Reactions=Kcu*Uu+Kcc*Uc;
R=Reactions;

for 3 = 1:60

u=LocM(:,:,]J) *D1;
ue=te(:,:,73) *u;
p=(ki(:,:,j)*ue)+Pfef(  J) s
p(6)=p(6)*-1;

pei(:,J)=p;

end

1)

Displacementi=Displace+Displacement;

Forces=pei;
TotalForces=pei+pe;

end
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